45 research outputs found

    Binaries among low-mass stars in nearby young moving groups

    Get PDF
    The solar galactic neighbourhood contains a number of young co-moving associations of stars (so-called `young moving groups') with ages of ~10--150 Myr, which are prime targets for a range of scientific studies, including direct imaging planet searches. The late-type stellar population of such groups still remain in their pre-main sequence phase, and are thus well suited for purposes such as isochronal dating. Close binaries are particularly useful in this regard, since they allow for a model-independent dynamical mass determination. Here we present a dedicated effort to identify new close binaries in nearby young moving groups, through high-resolution imaging with the AstraLux Sur Lucky Imaging camera. We surveyed 181 targets, resulting in the detection of 61 companions or candidates, of which 38 are new discoveries. An interesting example of such a case is 2MASS J00302572-6236015 AB, which is a high-probability member of the Tucana-Horologium moving group, and has an estimated orbital period of less than 10 years. Among the previously known objects is a serendipitous detection of the deuterium burning boundary circumbinary companion 2MASS J01033563-5515561 (AB)b in the z'-band, thereby extending the spectral coverage for this object down to near-visible wavelengths.Comment: 12 pages, 3 figures, accepted for publication in A&

    The discrepancy between dynamical and theoretical mass in the triplet-system 2MASS J10364483+1521394

    Full text link
    We combine new Lucky Imaging astrometry from NTT/AstraLux Sur with already published astrometry from the AstraLux Large M-dwarf Multiplicity Survey to compute orbital elements and individual masses of the 2MASS J10364483+1521394 triple system belonging to the Ursa-Major moving group. The system consists of one primary low-mass M-dwarf orbited by two less massive companions, for which we determine a combined dynamical mass of $M_{\rm{B}+\rm{C}}= 0.48 \pm 0.14\ M_\odot.Weshowfromthecompanionsrelativemotionsthattheyareofequalmass(withamassratioof. We show from the companions relative motions that they are of equal mass (with a mass ratio of 1.00 \pm 0.03),thus), thus 0.24 \pm 0.07\ M_\odotindividually,withaseparationof individually, with a separation of 3.2 \pm 0.3\ AUandconcludethatthesemassesaresignificantlyhigher(AU and conclude that these masses are significantly higher (30\%)thanwhatispredictedbytheoreticalstellarevolutionarymodels.Thebiggestuncertaintyremainsthedistancetothesystem,hereadoptedas) than what is predicted by theoretical stellar evolutionary models. The biggest uncertainty remains the distance to the system, here adopted as 20.1 \pm 2.0pcbasedontrigonometricparallax,whoseambiguityhasamajorimpactontheresult.WiththenewobservationaldataweareabletoconcludethattheorbitalperiodoftheBCpairis pc based on trigonometric parallax, whose ambiguity has a major impact on the result. With the new observational data we are able to conclude that the orbital period of the BC pair is 8.41^{+0.04}_{-0.02}\ $years.Comment: 9 pages, 7 figures, accepted for publication in Astronomy & Astrophysic

    Binaries among low-mass stars in nearby young moving groups

    Get PDF
    The solar galactic neighborhood contains a number of young co-moving associations of stars (known as young moving groups) with ages of ~10–150 Myr, which are prime targets for a range of scientific studies, including direct imaging planet searches. The late-type stellar populations of such groups still remain in their pre-main sequence phase, and are thus well suited for purposes such as isochronal dating. Close binaries are particularly useful in this regard since they allow for a model-independent dynamical mass determination. Here we present a dedicated effort to identify new close binaries in nearby young moving groups, through high-resolution imaging with the AstraLux Sur Lucky Imaging camera. We surveyed 181 targets, resulting in the detection of 61 companions or candidates, of which 38 are new discoveries. An interesting example of such a case is 2MASS J00302572-6236015 AB, which is a high-probability member of the Tucana-Horologium moving group, and has an estimated orbital period of less than 10 yr. Among the previously known objects is a serendipitous detection of the deuterium burning boundary circumbinary companion 2MASS J01033563-5515561 (AB)b in the z′ band, thereby extending the spectral coverage for this object down to near-visible wavelengths

    A Radial velocity survey of spatially resolved young, low-mass binaries

    Get PDF
    The identification and characterisation of low-mass binaries is of importance for a range of astrophysical investigations. Low-mass binaries in young (∼10–100 Myr) moving groups (YMGs) in the solar neighborhood are of particular significance as they provide unique opportunities to calibrate stellar models and evaluate the ages and coevality of the groups themselves. Low-mass M-dwarfs have pre-main sequence life times on the order of ∼100 Myr and therefore are continually evolving along a mass-luminosity track throughout the YMG phase, providing ideal laboratories for precise isochronal dating, if a model-independent dynamical mass can be measured. AstraLux lucky imaging multiplicity surveys have recently identified hundreds of new YMG low-mass binaries, where a subsample of M-dwarf multiples have estimated orbital periods less than 50 yr. We have conducted a radial velocity survey of a sample of 29 such targets to complement the astrometric data. This will allow enhanced orbital determinations and precise dynamical masses to be derived in a shorter timeframe than possible with astrometric monitoring alone, and allow for a more reliable isochronal analysis. Here we present radial velocity measurements derived for our sample over several epochs. We report the detection of the three-component spectroscopic multiple 2MASS J05301858-5358483, for which the C component is a new discovery, and forms a tight pair with the B component. Originally identified as a YMG member, we find that this system is a likely old field interloper, whose high chromospheric activity level is caused by tidal spin-up of the tight BC pair. Two other triple systems with a tight pair exist in the sample, 2MASS J04244260-0647313 (previously known) and 2MASS J20163382-0711456, but for the rest of the targets we find that additional tidally synchronized companions are highly unlikely, providing further evidence that their high chromospheric activity levels are generally signatures of youth

    Phenotypic Responses to a Lifestyle Intervention Do Not Account for Inter-Individual Variability in Glucose Tolerance for Individuals at High Risk of Type 2 Diabetes

    Get PDF
    Background: Lifestyle interventions have been shown to delay or prevent the onset of type 2 diabetes among high risk adults. A better understanding of the variability in physiological responses would support the matching of individuals with the best type of intervention in future prevention programmes, in order to optimize risk reduction. The purpose of this study was to determine if phenotypic characteristics at baseline or following a 12 weeks lifestyle intervention could explain the inter-individual variability in change in glucose tolerance in individuals with high risk for type 2 diabetes.Methods: In total, 285 subjects with normal glucose tolerance (NGT, FINDRISC score > 12), impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) were recruited for a 12 weeks lifestyle intervention. Glucose tolerance, insulin sensitivity, anthropometric characteristics and aerobic fitness were measured. Variability of responses was examined by grouping participants by baseline glycemic status, by cluster analysis based on the change in glucose tolerance and by Principal Component Analysis (PCA).Results: In agreement with other studies, the mean response to the 12 weeks intervention was positive for the majority of parameters. Overall, 89% improved BMI, 80% waist circumference, and 81% body fat while only 64% improved fasting plasma glucose and 60% 2 h glucose. The impact of the intervention by glycaemic group did not show any phenotypic differences in response between NGT, IFG, and IGT. A hierarchical cluster analysis of change in glucose tolerance identified four sub-groups of “responders” (high and moderate) and “non-responders” (no response or deteriorated) but there were few differences in baseline clincal and physiological parameters or in response to the intervention to explain the overall variance. A further PCA analysis of 19 clinical and physiological univariables could explain less than half (48%) of total variability.Conclusion: We found that phenotypic characteristics from standard clinical and physiological parameters were not sufficient to account for the inter-individual variability in glucose tolerance following a 12 weeks lifestyle intervention in inidivuals at high risk for type 2 diabetes. Further work is required to identify biomarkers that complement phenotypic traits and better predict the response to glucose tolerance

    2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes

    Get PDF
    corecore