17 research outputs found

    The effects of ageing biases on stock assessment and management advice: a case study on Namibian horse mackerel

    Get PDF
    We explore the influence of age-estimation errors on the results of the age-structured production model (ASPM) used for horse mackerel stock assessment in Namibia for the period 1961–2003. The analysis considered age data from eight readers collected during an otolith-reading workshop. Four scenarios of age-estimation errors were assumed: Case 1 — a reference age computed as the modal age of estimates obtained by the four most experienced readers; Case 2 — age readings from a precise and experienced (Namibian) reader of horse mackerel otoliths; Case 3 — age estimates from a reader that displayed positive bias compared with the reference ages; and Case 4 — age estimates from a reader that displayed negative bias compared with the reference ages. The age–length key of each case was applied to length distributions of survey, pelagic fleet and midwater fleet landings (1991–2003) to obtain catch-at-age data. These data were then used in the ASPM. Results obtained from Case 3 differed most significantly from the others and appeared to be unrealistic in terms of the state of the stock and negative log-likelihood estimates. The conclusion is that more resources need to be directed towards age determination, because management recommendations are highly sensitive to errors in ageing. Most effort should be placed into age estimation of age groups 3–5 (20–30 cm total length), but significant effort needs to be devoted to age estimation of midwater commercial samples. Finally, the extent of sampling and the raising strategy of length frequencies should be improved

    An updated assessment of the Agulhas sole resource, Austroglossus pectoralis

    Get PDF
    This analysis updates that of Butterworth and Glazer (2014), which considered two hypotheses of decreasing catchability and of decreasing productivity to account for a recent large drop in CPUE. Two further years of data reflect some increase in CPUE. For the most pessimistic scenario (a decrease in productivity, which remains at its current reduced level into the future), projections are somewhat more positive than previously, with recent biomasses estimated higher and projected to decrease more slowly if the 2013 effort level is maintained

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from 50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≀0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≀0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Publication history: Accepted - 23 August 2018; Published online - 8 October 2018.Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when highresolution spatial data are unavailable. If SAR was ≀0.1, as in 8 of 24 regions, therewas >95% probability that >90%of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≀0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.Funding for meetings of the study group and salary support for R.O.A. were provided by the following: David and Lucile Packard Foundation; the Walton Family Foundation; the Alaska Seafood Cooperative; American Seafoods Group US; Blumar Seafoods Denmark; Clearwater Seafoods Inc.; Espersen Group; Glacier Fish Company LLC US; Gortons Seafood; Independent Fisheries Limited N.Z.; Nippon Suisan (USA), Inc.; Pesca Chile S.A.; Pacific Andes International Holdings, Ltd.; San Arawa, S.A.; Sanford Ltd. N.Z.; Sealord Group Ltd. N.Z.; South African Trawling Association; Trident Seafoods; and the Food and Agriculture Organisation of the United Nations. Additional funding to individual authors was provided by European Union Project BENTHIS EU-FP7 312088 (to A.D.R., O.R.E., F.B., N.T.H., L.B.-M., R.C., H.O.F., H.G., J.G.H., P.J., S.K., M.L., G.G.-M., N.P., P.E.P., T.R., A.S., B.V., and M.J.K.); the Instituto PortuguĂȘs do Mar e da Atmosfera, Portugal (C.S.); the International Council for the Exploration of the Sea Science Fund (R.O.A. and K.M.H.); the Commonwealth Scientific and Industrial Research Organisation (C.R.P. and T.M.); the National Oceanic and Atmospheric Administration (R.A.M.); New Zealand Ministry for Primary Industries Projects BEN2012/01 and DAE2010/ 04D (to S.J.B. and R.F.); the Institute for Marine and Antarctic Studies, University of Tasmania and the Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia (J.M.S.); and UK Department of Environment, Food and Rural Affairs Project MF1225 (to S.J.)

    Influence of temperature on the microstructure of statoliths of the thumbstall squid Lolliguncula brevis

    No full text
    A laboratory study investigating the influence of temperature on the microstructure of statoliths of Lolliguncula brevis is described. Groups of squid were subjected to various temperature regimes for periods in excess of 30 d. Statoliths extracted from 20 squid were examined using a confocal microscope in laser scanning mode. The parts of the statoliths deposited during the course of the experiments were identified using either putative daily increment counts or from checks produced in response to capture and handling. These checks appear to consist of a series of prominent increments rather than reflecting a period of interrupted statolith growth. Increments deposited during the experiment generally displayed reduced contrast and clarity in comparison to the “wild” parts of the statolith, presumably in response to the constant conditions imposed in the laboratory. Average statolith growth rates observed over the course of the experiment showed a strong positive relationship to ambient temperature. A significant sex effect was apparent, with statoliths of female squid generally growing faster than those of males. Observed statolith growth rates at 15 °C were generally below 1 Όm d−1, suggesting that the widths of daily increments produced under these conditions may approach the resolution limits of a light microscope. The implications for studies using increment numbers to estimate age are discussed

    Quantitative micro-PIXE mapping of squid statoliths

    No full text
    Distribution of elements in statoliths of squid Loligo vulgaris reynaudii d'Orbigny, 1845 was studied, using the true elemental imaging system (Dynamic Analysis) of the NAC nuclear microprobe. The analysis revealed various patterns of Ca and Sr distributions. The biological interpretation of the most frequent pattern is linked with the role of Sr in the statolith deposition process. Other patterns are linked with the technique used and the specific characteristics of the sample. Traces of other elements (Cr, Mn, Fe, Cu, Zn, Br, Pb) were also found. Likewise, their presence may have the biological interpretation (Zn, Cu and Br), or is an artefact linked to the methods and conditions of sample preparation and/or analysis. Methodical aspects of using proton backscattering for PIXE X-ray yield corrections are also discussed

    Growth and mating of southern African Lycoteuthis lorigera (Steenstrup, 1875) (Cephalopoda; Lycoteuthidae)

    No full text
    Lycoteuthis lorigera is an oceanic squid that is abundant in the Benguela system. Little is known about the biology of this squid except that it is eaten in large numbers by numerous oceanic predators and that males grow to larger size than females, which is unique for oegopsid squid. The aim of this study was to better understand the biology of this species by investigating its age and growth, as well as its mating system. Toward this end, the age of 110 individuals, ranging from 35 to 110 mm, was estimated by counting statolith growth increments. Estimates of age ranged from 131 to 315 days and varied with mantle length. No significant differences were found in the size of males and females of equivalent ages. The relationship between ML and age for both sexes was best described by an exponential growth curve, probably because no early life stages were aged in this study. Only one mature male (ML 160 mm) was aged, and preliminary estimates suggest it was 386 days old. Instantaneous growth rates were low (0.54% ML/day and 1.4% BM/day) but consistent with enoploteuthid growth rates. When the growth rate of L. lorigera was corrected for temperature encountered during the animal’s life, the growth rate was fast (0.47% BM/degree-days) and consistent with the hypothesis that small cephalopods grow fast and that large cephalopods grow older, rather than fast. Mature females were often mated and had spermatangia in a seminal receptacle on the dorsal pouch behind the nuchal cartilage. Males probably transfer spermatangia to the females using their long second and/or third arm pair since the paired terminal organs open far from the mantle opening

    The 2005 KwaZulu-Natal sardine run survey sheds new light on the ecology of small pelagic fish off the east coast of South Africa

    No full text
    Despite much public awareness surrounding the annual migration of sardine Sardinops sagax northward along the east coast of South Africa in winter each year, relatively little research effort has been expended to improve understanding of the ‘sardine run’. For this reason, a  dedicated multidisciplinary survey, timed to coincide with the annual sardine run, was conducted off the East Coast in June and July of 2005. The major objective of the survey was to estimate the biomass of sardine off the East Coast during the run, and to compare this with biomass estimates collected during previous surveys conducted in this area during the late 1980s when the South African sardine population  was at a considerably smaller size. We also collected data on the distribution of sardine and other small pelagic fish species and their eggs, the biological characteristics of sardine during the run, and data on the hydrography (temperature and currents) and lower trophic levels (phytoplankton and zooplankton) of the region. Results suggest that the biomass of sardine off the East Coast in winter remains relatively small and consistent, regardless of overall sardine population size. The narrow continental shelf to the east of Port Alfred, which is  dominated offshore by the fast-flowing warm Agulhas Current, constrains the amount of suitable habitat for sardine and other clupeoids such as anchovy Engraulis encrasicolus, West Coast round herring Etrumeus whiteheadi and East Coast round herring Etrumeus teres, and hence precludes these species from attaining a high biomass in this region. Additionally, primary and secondary productivity levels are much lower than elsewhere on the western and eastern Agulhas Bank off the south coast of South Africa, suggesting that the sardine run is not a feeding migration. A previous hypothesis that the run is mainly a result of an expansion of the distributional range of these fish as conditions become favourable in winter due to sporadic cooling off the East Coast is also not entirely supported by results from the survey. It is suggested that a migration for the purposes of spawning off this coast when conditions become favourable is a more likely incentive for sardine to undertake this arduous journey, despite increased predation and poor feeding conditions. Keywords: anchovy, hydroacoustic survey, round herring, sardine run, spawning migrationAfrican Journal of Marine Science 2010, 32(2): 337–36
    corecore