91 research outputs found

    Natural and cultural history

    Get PDF
    p. 157-248 : ill., maps ; 26 cm.Includes bibliographical references (p. 244-248).The natural history of St. Catherines Island / David Hurst Thomas -- The prehistory of St. Catherines Island / Clark Spencer Larsen and David Hurst Thomas -- The ethnohistory of the Guale Coast through 1684 / Grant D. Jones -- The history of St. Catherines Island after 1684 / Roger S. Durham and David Hurst Thomas -- Appendix: Notes on ethnohistorical resources and methodology / Grant D. Jones."This volume, the first in a series, considers the natural and cultural background to anthropological research being conducted on St. Catherines Island, Georgia. The island is one of a complex series of barrier islands, of various orgins. The extant vegetation is an interesting mixture of natural succession, periodically disrupted by recent historical processes. Archaeologists have worked on St. Catherines Island discontinuously since 1896, when C.B. Moore conducted excavations in several prehistoric burial mounds. The University of Georgia then conducted a program of burial mound and midden excavations in 1969-1970, and the American Museum of Natural History began intensive archaeological investigations on St. Catherines Island in 1974. The ethnohistory of the Guale Indians is discussed in detail, suggesting that they were essentially a riverine people with strong internal trade contacts. Guale political organization was that of the classic Creek chiefdom. Each chiefdom maintained two principal towns, and may have been organized according to dual political organization. This interpretation contrasts sharply with the traditional view of the Guale, who are often characterized as isolated, scattered, shifting cultivators. The volume concludes with a historical outline of St. Catherines Island from the early Spanish mission period up to present times"--P. 159

    Halogen Oxidation Reactions of (C5Ph5)Cr(CO)3 and Lewis Base Addition To [(C5Ph5)Cr(μ-X)X]2: Electrochemical, Magnetic, and Raman Spectroscopic Characterization of [(C5Ph5)CrX2]2 and (C5Ph5)CrX2(THF) (X = Cl, Br, I). X-ray Crystal Structure of [(C5Ph5)Cr(μ-Cl)Cl]2

    Get PDF
    The 17-electron complex (C5Ph5)Cr(CO)3 reacts with halogens (C6H5I•Cl2, Br2, and I2) in C6H6 to yield the dimeric oxidation products [(C5Ph5)Cr(m-X)X]2 as thermally stable solids. Reactions with other chlorinating agents similarly yield [(C5Ph5)CrCl2]2. An X-ray crystal structure of [(C5Ph5)Cr(m-Cl)Cl]2 was obtained. The magnetic properties of the Cl2 bridged dimer have been determined and modeled using the usual isotropic hamiltonian which yields J/k = –30 K. Low-temperature (77 K) Raman spectra of solid [(C5Ph5)CrX2]2 (X = Cl, I) allow assignments to be made for the metal-ring and metal halogen stretching modes in the low frequency region (\u3c 600 cm-1). Tetrahydrofuran (THF) cleaves these dimers to yield complexes of the form (C5Ph5)CrX2(THF)

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Axiomatic Choice Theory Traveling between Mathematical Formalism, Normative Choice Rules and Psychological Measurement, 1944-1956

    Full text link

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p
    corecore