12 research outputs found
Smart technologies for effective reconfiguration: the FASTER approach
Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows
Software Implementation and Hardware Acceleration of Retinal Vessel Segmentation for Diabetic Retinopathy Screening Tests
Screening tests are an effective tool for the diagnosis and prevention of several diseases. Unfortunately, in order to produce an early diagnosis, the huge number of collected samples has to be processed faster than before. In particular this issue concerns image processing procedures, as they require a high computational complexity, which is not satisfied by modern software architectures. To this end, Field Programmable Gate Arrays (FPGAs) can be used to accelerate partially or entirely the computation. In this work, we demonstrate that the use of FPGAs is suitable for biomedical application, by proposing a case of study concerning the implementation of a vessels segmentation algorithm. The experimental results, computed on DRIVE and STARE databases, show remarkable improvements in terms of both execution time and power efficiency (6X and 5.7X respectively) compared to the software implementation. On the other hand, the proposed hardware approach outperforms literature works (3X speedup) without affecting the overall accuracy and sensitivity measures
Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord
Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN.Funding Agencies|Austrian Science Fund [P25240-B24]; Austrian Ministry of Science, Research and Economy (BIGWIG-MS); Ministry of Education, Culture, Sports, Science and Technology of Japan; Alumni Association of Saitama Medical University</p