179 research outputs found

    Fonctionnement hydrologique d'un interfluve sédimentaire de la plaine côtière ancienne de Guyane Française

    Get PDF
    Le fonctionnement hydrologique de la plaine côtière ancienne de Guyane française constitue une des contraintes majeures à sa mise en valeur agricole, du fait de l'existence de périodes d'excès d'eau prolongées.L'objectif de cet article est d'analyser, sur un interfluve caractéristique de la plaine côtière ancienne, la forme et la dynamique de la nappe et ses sources d'alimentation en relation avec la variabilité des propriétés physiques des sols.Sur le plan expérimental, le travail est conduit à partir d'un suivi hydrologique in situ des fluctuations de la nappe observées sur 21 stations et d'une caractérisation de la variabilité spatiale de la conductivité hydraulique des sols par la méthode du trou de tarière à charge variable. Sur le plan de la modélisation, l'identification de la répartition spatiale de la recharge sur l'interfluve est déterminée par une modélisation inverse. Les suivis montrent d'une part la rapidité de réponse de la nappe aux pluies et d'autre part des temps de présence de la nappe en surface variables selon les sols. La modélisation conforte l'hypothèse d'isolement hydraulique de l'interfluve. La dynamique de la nappe est directement reliée aux entrées pluviométriques et dans une moindre mesure aux sols. La variabilité spatiale de la recharge est par ailleurs sous la dépendance de la topographie et de l'hétérogénéité spatiale de la conductivité hydraulique. Enfin, une estimation du ruissellement de surface souligne son importance sur l'interfluve.Les résultats obtenus montrent que l'engorgement des sols de la plaine côtière est sous la dépendance directe des processus hydrologiques observés à l'échelle de chaque interfluve. La prédiction des zones à excès d'eau marqué et des zones où la recharge est homogène peut être envisagée à partir de la connaissance de la topographie et de la distribution des sols. Sur le plan agronomique et pour les sols à forte contrainte hydrique, la mise en place de systèmes de drainage permettant leur mise en valeur agricole est à considérer.The hydrological behaviour of the old coastal plain in French Guyana causes intense soil waterlogging, which is a major constraint to the agricultural development of this area. The old coastal plain presents a succession of similar old offshore bars (Fig. 1). To elucidate the factors affecting groundwater fluctuations in the plain, the hydrological behaviour of one typical bar was studied. This paper presents the results of the survey of the bar and of the identification of groundwater recharge by inverse modelling. It also investigates the relationships between the spatial variability of recharge rates, the topography, and the soil distribution over the bar to provide means for extrapolation to the whole plain.A bar, covering 0.16 km2, was chosen for the present study (Fig. 2). The maximum relief of the bar is 5 m and its general elevation lies between 2 and 7 m above sea level. The bar is drained by two convergent thalwegs. An important lateral and vertical soil differentiation was observed over a depth of approximately 1 m. Four main soil types (FAO/UNESCO classification) were identified at specific positions on the bar: podzols on the top, ferralsols on the upper slope, alluvial gleysols on the thalwegs and planosolic soils on the mid slope and between ferralsols and podzols. Ferralsols exhibit a progressive increase of clay content with increasing depth. The other soil types present sandy horizons with an irregular textural discontinuity (TD) located at a depth of 70 to 100 cm. Underneath the textural discontinuity lies a sandy clay marine alluvium, which is heterogeneous, ferrallitized and hydromorphic, with lenses of sand and clay. An impervious clay layer (NI) occurs at the base of the bar at an average height of 2 m above sea level. The climate is equatorial and has two marked seasons, wet and dry. Rain is mostly confined to the period November-July, but with a maximum from May to July. Mean annual rainfall is 2700 mm.A network of 21 piezometers was set up at the various topographic and pedological situations (Fig. 3). Six sampling sites were also equipped with tensiometers and access tubes for neutron probes. Groundwater monitoring lasted for three years from 1983 to 1986. The variability of soil hydraulic conductivity over the bar was measured by the auger hole method at the intersections of a 50 m square grid and at 25 m away from a few such intersections. A geostatistical analysis was performed and kriged maps of hydraulic conductivity were produced (Figs. 4 and 5). The comparison between the kriged maps and the soil map indicates that ferralsols exhibit higher conductivities than the other soils.Groundwater monitoring showed three main points. First, a fast response of groundwater fluctuations to rainfall was observed on the bar, which suggests that the hydrology of the bar is little influenced by contributions from neighbouring bars or from the Precambrian basement situated upgradient. Second, time length of soil saturation varied markedly over the bar and was related to the soil types (Fig. 7). Lastly, the observed spatial variability of the hydraulic conductivities and the evolution of water table levels indicate the possibility of a variable distribution of recharge over the bar.The deterministic flow model used for this study, WATASI (WAter TAble SImulation, Wolsack, 1982) is based on a Darcy-Dupuit hydraulic schematization. It is an integrated finite element and multilayer groundwater model with square cells of variable size. Here, three layers were considered: one representing the topsoil, from surface to the textural discontinuity, the second representing the sandy clayey alluvium, lying over the impervious layer, and the third representing the thalwegs surrounding the interfluve (Fig. 10). All layers were divided into cells whose length was either 25 m or 50 m. For the purpose of recharge identification, according to the results of the survey, the cells were grouped in six zones of homogeneous slope and soil type, with each zone assumed to exhibit constant recharge. Calibration of the parameters of the model and identification of recharge over the six zones were conducted over three periods, one exhibiting steady state flow and the two others transient flow, by minimizing the difference between the measured and simulated hydraulic heads. The results obtained by the simulation approach are:- No assumption of lateral inflow is necessary to simulate properly the evolution of hydraulic heads (Figs. 11 and 13); thus groundwater recharge only originates from the seepage of rainfall through the soil cover of the bar. - The spatial variability of recharge appears to follow firstly the slope distribution, and secondly the soil distribution: zones of high recharge correspond to zones of limited waterlogging and vice versa (Figs. 12 and 14). - The estimated rates of recharge are small in comparison to rainfall, and soil water budget calculations demonstrate the existence of large runoff rates. It can be concluded that the waterlogging of soils on the old coastal plain is mainly caused by the hydrological processes at the scale of each bar. Thus, for improving the agricultural suitability of the soils on the plain, local drainage of the waterlogged soils should be sufficient. To predict over the plain which zones should be drained, information on topography and soil distribution can be used as there are good correlations between the variability of these parameters and the variability in groundwater recharge and water table depths

    A PCR-mutagenesis strategy for rapid detection of mutations in codon 634 of the ret proto-oncogene related to MEN 2A.

    Get PDF
    BACKGROUND: Multiple endocrine neoplasias type 2A (MEN 2A) is a dominantly inherited cancer syndrome. Missence mutations in the codon encoding cysteine 634 of the ret proto-oncogene have been found in 85% of the MEN 2A families. The main tumour type always present in MEN 2A is medullar thyroid carcinoma (MTC). Only 25% of all MTC are hereditary, and generally they are identified by a careful family history. However, some familial MTCs are not easily detected by this means and underdiagnosis of MEN 2A is suspected. METHODS: DNA samples from MEN 2A patients were amplified by PCR. The products were incubated with the restriction enzyme Bst ApI or Bgl I. The samples were loaded in non-denaturing 10% Polyacrilamyde Gel and run at 120 volts for 40 min. The gels were stained with 10 μg/ml ethidium bromide, and the bands were visualized under a UV lamp. RESULTS: We developed a PCR-mutagenic method to check the integrity of the three bases of the cysteine 634 codon. CONCLUSION: The method can be used to detect inherited mutations in MTC patients without a clear family history. The method is relatively simple to use as a routine test in these patients to decrease the underdiagnosis of MEN 2A. In addition, the assay can be used to screen affected families with any mutation in cysteine 634

    Specific fatty acid intake and the risk of pancreatic cancer in Canada

    Get PDF
    The possible association of specific fatty acid (FA) intake and pancreatic cancer risk was investigated in a population-based case–control study of 462 histologically confirmed cases and 4721 frequency-matched controls in eight Canadian provinces between 1994 and 1997. Dietary intake was assessed by means of a self-administered food frequency questionnaire. Unconditional logistic regression was used to assess associations between dietary FAs and pancreatic cancer risk. After adjustment for age, province, body mass index, smoking, educational attainment, fat and total energy intake, statistically significant inverse associations were observed between pancreatic cancer risk and palmitate (odds ratios (ORs)=0.73; 95% confidence intervals (CIs) 0.56–0.96; P-trend=0.02), stearate (OR=0.70; 95% CI 0.51–0.94; P-trend=0.04), oleate (OR=0.75; 95% CI 0.55–1.02; P-trend=0.04), saturated FAs (OR=0.67; 95% CI 0.50–0.91; P-trend=0.01), and monounsaturated FAs (OR=0.72; 95% CI 0.53–0.98; P-trend=0.02), when comparing the highest quartile of intake to the lowest. Significant interactions were detected between body mass index and both saturated and monounsaturated FAs, with a markedly reduced risk associated with intake of stearate (OR=0.36; 95% CI 0.18–0.70; P-trend=0.001), oleate (OR=0.36; 95% CI 0.19–0.72; P-trend=0.002), saturated FAs (OR=0.35; 95% CI 0.18–0.67; P-trend=0.002), and monounsaturated FAs (OR=0.32; 95% CI 0.16–0.63; P-trend<0.0001) among subjects who are obese. The results suggest that substituting polyunsaturated FAs with saturated or monounsaturated FAs may reduce pancreatic cancer risk, independently of total energy intake, particularly among obese subjects

    Reelin Controls Progenitor Cell Migration in the Healthy and Pathological Adult Mouse Brain

    Get PDF
    Understanding the signals that control migration of neural progenitor cells in the adult brain may provide new therapeutic opportunities. Reelin is best known for its role in regulating cell migration during brain development, but we now demonstrate a novel function for reelin in the injured adult brain. First, we show that Reelin is upregulated around lesions. Second, experimentally increasing Reelin expression levels in healthy mouse brain leads to a change in the migratory behavior of subventricular zone-derived progenitors, triggering them to leave the rostral migratory stream (RMS) to which they are normally restricted during their migration to the olfactory bulb. Third, we reveal that Reelin increases endogenous progenitor cell dispersal in periventricular structures independently of any chemoattraction but via cell detachment and chemokinetic action, and thereby potentiates spontaneous cell recruitment to demyelination lesions in the corpus callosum. Conversely, animals lacking Reelin signaling exhibit reduced endogenous progenitor recruitment at the lesion site. Altogether, these results demonstrate that beyond its known role during brain development, Reelin is a key player in post-lesional cell migration in the adult brain. Finally our findings provide proof of concept that allowing progenitors to escape from the RMS is a potential therapeutic approach to promote myelin repair

    A Spontaneous Mutation in Contactin 1 in the Mouse

    Get PDF
    Mutations in the gene encoding the immunoglobulin-superfamily member cell adhesion molecule contactin1 (CNTN1) cause lethal congenital myopathy in human patients and neurodevelopmental phenotypes in knockout mice. Whether the mutant mice provide an accurate model of the human disease is unclear; resolving this will require additional functional tests of the neuromuscular system and examination of Cntn1 mutations on different genetic backgrounds that may influence the phenotype. Toward these ends, we have analyzed a new, spontaneous mutation in the mouse Cntn1 gene that arose in a BALB/c genetic background. The overt phenotype is very similar to the knockout of Cntn1, with affected animals having reduced body weight, a failure to thrive, locomotor abnormalities, and a lifespan of 2–3 weeks. Mice homozygous for the new allele have CNTN1 protein undetectable by western blotting, suggesting that it is a null or very severe hypomorph. In an analysis of neuromuscular function, neuromuscular junctions had normal morphology, consistent with previous studies in knockout mice, and the muscles were able to generate appropriate force when normalized for their reduced size in late stage animals. Therefore, the Cntn1 mutant mice do not show evidence for a myopathy, but instead the phenotype is likely to be caused by dysfunction in the nervous system. Given the similarity of CNTN1 to other Ig-superfamily proteins such as DSCAMs, we also characterized the expression and localization of Cntn1 in the retinas of mutant mice for developmental defects. Despite widespread expression, no anomalies in retinal anatomy were detected histologically or using a battery of cell-type specific antibodies. We therefore conclude that the phenotype of the Cntn1 mice arises from dysfunction in the brain, spinal cord or peripheral nervous system, and is similar in either a BALB/c or B6;129;Black Swiss background, raising a possible discordance between the mouse and human phenotypes resulting from Cntn1 mutations

    Mutation and deletion analysis of GFRα-1, encoding the co-receptor for the GDNF/RET complex, in human brain tumours

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) plays a key role in the control of vertebrate neuron survival and differentiation in both the central and peripheral nervous systems. GDNF preferentially binds to GFRα-1 which then interacts with the receptor tyrosine kinase RET. We investigated a panel of 36 independent cases of mainly advanced sporadic brain tumours for the presence of mutations in GDNF and GFRα-1. No mutations were found in the coding region of GDNF. We identified six previously described GFRα-1 polymorphisms, two of which lead to an amino acid change. In 15 of 36 brain tumours, all polymorphic variants appeared to be homozygous. Of these 15 tumours, one also had a rare, apparently homozygous, sequence variant at codon 361. Because of the rarity of the combination of homozygous sequence variants, analysis for hemizygous deletion was pursued in the 15 samples and loss of heterozygosity was found in 11 tumours. Our data suggest that intragenic point mutations of GDNF or GFRα-1 are not a common aetiologic event in brain tumours. However, either deletion of GFRα-1 and/or nearby genes may contribute to the pathogenesis of these tumours

    Changes in Glial Cell Line-derived Neurotrophic Factor Expression in the Rostral and Caudal Stumps of the Transected Adult Rat Spinal Cord

    Get PDF
    Limited information is available regarding the role of endogenous Glial cell line-derived neurotrophic factor (GDNF) in the spinal cord following transection injury. The present study investigated the possible role of GDNF in injured spinal cords following transection injury (T9–T10) in adult rats. The locomotor function recovery of animals by the BBB (Basso, Beattie, Bresnahan) scale score showed that hindlimb support and stepping function increased gradually from 7 days post operation (dpo) to 21 dpo. However, the locomotion function in the hindlimbs decreased effectively in GDNF-antibody treated rats. GDNF immunoreactivty in neurons in the ventral horn of the rostral stump was stained strongly at 3 and 7 dpo, and in the caudal stump at 14 dpo, while immunostaining in astrocytes was also seen at all time-points after transection injury. Western blot showed that the level of GDNF protein underwent a rapid decrease at 7 dpo in both stumps, and was followed by a partial recovery at a later time-point, when compared with the sham-operated group. GDNF mRNA-positive signals were detected in neurons of the ventral horn, especially in lamina IX. No regenerative fibers from corticospinal tract can be seen in the caudal segment near the injury site using BDA tracing technique. No somatosensory evoked potentials (SEP) could be recorded throughout the experimental period as well. These findings suggested that intrinsic GDNF in the spinal cord could play an essential role in neuroplasticity. The mechanism may be that GDNF is involved in the regulation of local circuitry in transected spinal cords of adult rats

    Chemical Approaches To Perturb, Profile, and Perceive Glycans

    Get PDF
    Glycosylation is an essential form of post-translational modification that regulates intracellular and extracellular processes. Regrettably, conventional biochemical and genetic methods often fall short for the study of glycans, because their structures are often not precisely defined at the genetic level. To address this deficiency, chemists have developed technologies to perturb glycan biosynthesis, profile their presentation at the systems level, and perceive their spatial distribution. These tools have identified potential disease biomarkers and ways to monitor dynamic changes to the glycome in living organisms. Still, glycosylation remains the underexplored frontier of many biological systems. In this Account, we focus on research in our laboratory that seeks to transform the study of glycan function from a challenge to routine practice

    The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons

    Get PDF
    The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered
    corecore