7 research outputs found

    B7-H1, Which Represses EBV-Immortalized B Cell Killing by Autologous T and NK Cells, Is Oppositely Regulated by c-Myc and EBV Latency III Program at Both mRNA and Secretory Lysosome Levels.

    No full text
    International audienceEBV-immortalized B cells induce a complex immune response such that the virus persists as a clinically silent infection for the lifetime of the infected host. B7-H1, also called PD-L1, is a cosignaling molecule of the B7 family that can inhibit activated T cell effectors by interaction with its receptor PD-1. In this work, we have studied the dependence of B7-H1 on NF-ÎșB and c-Myc, the two main transcription factors in EBV latency III proliferating B cells, on various lymphoblastoid and Burkitt lymphoma cell lines, some of them being inducible or not for the EBV latency III program and/or for c-Myc. We found that B7-H1 repressed killing of EBV-immortalized B cells by their autologous T and NK cells. At the mRNA level, NF-ÎșB was a weak inducer whereas c-Myc was a strong repressor of B7-H1 expression, an effect mediated by STAT1 inhibition. At the protein level, B7-H1 molecules were stored in both degradative and unconventional secretory lysosomes. Surface membrane B7-H1 molecules were constitutively internalized and proteolyzed in lysosomes. The EBV latency III program increased the amounts of B7-H1-containing secretory lysosomes and their export to the surface membrane. By repressing actin polymerization, c-Myc blocked secretory lysosome migration and B7-H1 surface membrane export. In addition to B7-H1, various immunoregulatory molecules participating in the immunological synapse are stored in secretory lysosomes. By playing on actin polymerization, c-Myc could thus globally regulate the immunogenicity of transformed B cells, acting on export of secretory lysosomes to plasma membrane

    c-Myc and Rel/NF-ÎșB Are the Two Master Transcriptional Systems Activated in the Latency III Program of Epstein-Barr Virus-Immortalized B Cells ▿ †

    No full text
    The Epstein-Barr virus (EBV) latency III program imposed by EBNA2 and LMP1 is directly responsible for immortalization of B cells in vitro and is thought to mediate most immunodeficiency-related posttransplant lymphoproliferative diseases in vivo. To answer the question whether and how this proliferation program is related to c-Myc, we have established the transcriptome of both c-Myc and EBV latency III proliferation programs using a Lymphochip specialized microarray. In addition to EBV-positive latency I Burkitt lymphoma lines and lymphoblastoid cell lines (LCLs), we used an LCL expressing an estrogen-regulatable EBNA2 fusion protein (EREB2-5) and derivative B-cell lines expressing a constitutively active or tetracycline-regulatable c-myc gene. A total of 897 genes were found to be fourfold or more up- or downregulated in either one or both proliferation programs compared to the expression profile of resting EREB2-5 cells. A total of 661 (74%) of these were regulated similarly in both programs. Numerous repressed genes were known targets of STAT1, and most induced genes were known to be upregulated by c-Myc and to be involved in cell proliferation. In keeping with the gene expression patterns, inactivation of c-Myc by a chemical inhibitor or by conditional expression of dominant-negative c-Myc and Max mutants led to proliferation arrest of LCLs. Most genes differently regulated in both proliferation programs corresponded to genes induced by NF-ÎșB in LCLs, and many of them coded for immunoregulatory and/or antiapoptotic molecules. Thus, c-Myc and NF-ÎșB are the two main transcription factors responsible for the phenotype, growth pattern, and biological properties of cells driven into proliferation by EBV

    Distinct B-Cell Specific Transcriptional Contexts of the BCL2 Oncogene Impact Pre-Malignant Development in Mouse Models

    No full text
    International audienceSimple Summary Beyond the classical t(14;18) translocation associated with follicular lymphoma, BCL2 is deregulated in multiple B-cell malignancies, including some cases of myeloma, and through diverse genetic anomalies. It is currently unclear how the various deregulation patterns mechanistically impact the phenotype of theses malignancies. We designed two different BCL2 deregulation models in transgenic mice, whereby the oncogene was either associated with the IgH3 ' RR superenhancer, as in t(14;18), or inserted into the kappa light chain locus. We compared the impact of these models on B-cell fate and lymphoid tissues. Linkage to the IgH superenhancer showed a quite specific impact on germinal center B cell populations. The Ig kappa model was much less specific and strongly boosted the plasma cell in-flow and the accumulation of long-lived plasma cells. Upregulated expression of the anti-apoptotic BCL2 oncogene is a common feature of various types of B-cell malignancies, from lymphoma to leukemia or myeloma. It is currently unclear how the various patterns of deregulation observed in pathology eventually impact the phenotype of malignant B cells and their microenvironment. Follicular lymphoma (FL) is the most common non-Hodgkin lymphoma arising from malignant germinal center (GC) B-cells, and its major hallmark is the t(14:18) translocation occurring in B cell progenitors and placing the BCL2 gene under the control of the immunoglobulin heavy chain locus regulatory region (IgH 3 ' RR), thus exposing it to constitutive expression and hypermutation. Translocation of BCL2 onto Ig light chain genes, BCL2 gene amplification, and other mechanisms yielding BCL2 over-expression are, in contrast, rare in FL and rather promote other types of B-cell lymphoma, leukemia, or multiple myeloma. In order to assess the impact of distinct BCL2 deregulation patterns on B-cell fate, two mouse models were designed that associated BCL2 and its full P1-P2 promoter region to either the IgH 3 ' RR, within a "3 ' RR-BCL2" transgene mimicking the situation seen in FL, or an Ig light chain locus context, through knock-in insertion at the Ig kappa locus ("Ig kappa-BCL2" model). While linkage to the IgH 3 ' RR mostly yielded expression in GC B-cells, the Ig kappa-driven up-regulation culminated in plasmablasts and plasma cells, boosting the plasma cell in-flow and the accumulation of long-lived plasma cells. These data demonstrate that the timing and level of BCL2 deregulation are crucial for the behavior of B cells inside GC, an observation that could strongly impact the lymphomagenesis process triggered by secondary genetic hits
    corecore