37 research outputs found

    State of the art and trends in the monitoring, detection and diagnosis of failures in electric induction motors

    Get PDF
    Producción CientíficaDespite the complex mathematical models and physical phenomena on which it is based, the simplicity of its construction, its affordability, the versatility of its applications and the relative ease of its control have made the electric induction motor an essential element in a considerable number of processes at the industrial and domestic levels, in which it converts electrical energy into mechanical energy. The importance of this type of machine for the continuity of operation, mainly in industry, is such that, in addition to being an important part of the study programs of careers related to this branch of electrical engineering, a large number of investigations into monitoring, detecting and quickly diagnosing its incipient faults due to a variety of factors have been conducted. This bibliographic research aims to analyze the conceptual aspects of the first discoveries that served as the basis for the invention of the induction motor, ranging from the development of the Fourier series, the Fourier transform mathematical formula in its different forms and the measurement, treatment and analysis of signals to techniques based on artificial intelligence and soft computing. This research also includes topics of interest such as fault types and their classification according to the engine, software and hardware parts used and modern approaches or maintenance strategies

    Fault Detection of Wind Turbine Induction Generators through Current Signals and Various Signal Processing Techniques

    Get PDF
    Producción CientíficaIn the wind industry (WI), a robust and effective maintenance system is essential. To minimize the maintenance cost, a large number of methodologies and mathematical models for predictive maintenance have been developed. Fault detection and diagnosis are carried out by processing and analyzing various types of signals, with the vibration signal predominating. In addition, most of the published proposals for wind turbine (WT) fault detection and diagnosis have used simulations and test benches. Based on previous work, this research report focuses on fault diagnosis, in this case using the electrical signal from an operating WT electric generator and applying various signal analysis and processing techniques to compare the effectiveness of each. The WT used for this research is 20 years old and works with a squirrel-cage induction generator (SCIG) which, according to the wind farm control systems, was fault-free. As a result, it has been possible to verify the feasibility of using the current signal to detect and diagnose faults through spectral analysis (SA) using a fast Fourier transform (FFT), periodogram, spectrogram, and scalogram

    Conversion of a network section with loads, storage systems and renewable generation sources into a smart microgrid

    Get PDF
    This paper shows an experimental application case to convert a part of the grid formed by renewable generation sources, storage systems, and loads into a smart microgrid. This transformation will achieve greater efficiency and autonomy in its management. If we add to this the analysis of all the data that has been recorded and the correct management of the energy produced and stored, we can achieve a reduction in the electricity consumption of the distribution grid and, with this, a reduction in the associated bill. To achieve this transformation in the grid, we must provide it with intelligence. To achieve this, a four steps procedure are proposed: identification and description of the elements, integration of the elements in the same data network, establishing communication between the elements and the control system, creating an interface that allows control of the entire network. The microgrid of CEDER-CIEMAT (Renewable Energy Centre in Soria, Spain) is presented as a real case study. This centre is made up of various sources of generation, storage, and consumption. All the elements that make up the microgrid are incorporated into free software, Home Assistant, allowing real-time control and monitoring of all of them thanks to the intelligence that has been provided to the grid. The novelty of this paper is that it describes a procedure that is not reported in the current literature and that, being developed with Home Assistant, is free and allows the control and management of a microgrid from any device (mobile, PC) and from any place, even though not on the same data network as the microgrid.Peer ReviewedObjectius de Desenvolupament Sostenible::7 - Energia Assequible i No ContaminantPostprint (published version

    Condition monitoring of bearing faults using the stator current and shrinkage methods

    Get PDF
    Producción CientíficaCondition monitoring of bearings is an open issue. The use of the stator current to monitor induction motors has been validated as a very advantageous and practical way to detect several types of faults. Nevertheless, for bearing faults, the use of vibrations or sound generally offers better results in the accuracy of the detection, although with some disadvantages related to the sensors used for monitoring. To improve the performance of bearing monitoring, it is proposed to take advantage of more information available in the current spectra, beyond the usually employed, incorporating the amplitude of a significant number of sidebands around the first eleven harmonics, growing exponentially the number of fault signatures. This is especially interesting for inverter-fed motors. But, in turn, this leads to the problem of overfitting when applying a classifier to perform the fault diagnosis. To overcome this problem, and still exploit all the useful information available in the spectra, it is proposed to use shrinkage methods, which have been lately proposed in machine learning to solve the overfitting issue when the problem has many more variables than examples to classify. A case study with a motor is shown to prove the validity of the proposal.CAPES (process BEX552269/2011-5

    Maintenance models applied to wind turbines. A comprehensive overview

    Get PDF
    Producción CientíficaWind power generation has been the fastest-growing energy alternative in recent years, however, it still has to compete with cheaper fossil energy sources. This is one of the motivations to constantly improve the efficiency of wind turbines and develop new Operation and Maintenance (O&M) methodologies. The decisions regarding O&M are based on different types of models, which cover a wide range of scenarios and variables and share the same goal, which is to minimize the Cost of Energy (COE) and maximize the profitability of a wind farm (WF). In this context, this review aims to identify and classify, from a comprehensive perspective, the different types of models used at the strategic, tactical, and operational decision levels of wind turbine maintenance, emphasizing mathematical models (MatMs). The investigation allows the conclusion that even though the evolution of the models and methodologies is ongoing, decision making in all the areas of the wind industry is currently based on artificial intelligence and machine learning models

    Diagnosis of broken bars in wind turbine squirrel cage induction generator: Approach based on current signal and generative adversarial networks

    Get PDF
    Producción CientíficaTo ensure the profitability of the wind industry, one of the most important objectives is to minimize maintenance costs. For this reason, the components of wind turbines are continuously monitored to detect any type of failure by analyzing the signals measured by the sensors included in the condition monitoring system. Most of the proposals for the detection and diagnosis of faults based on signal processing and artificial intelligence models use a fault-free signal and a signal acquired on a system in which a fault has been provoked; however, when the failures are incipient, the frequency components associated with the failures are very close to the fundamental component and there are incomplete data, the detection and diagnosis of failures is difficult. Therefore, the purpose of this research is to detect and diagnose failures of the electric generator of wind turbines in operation, using the current signal and applying generative adversarial networks to obtain synthetic data that allow for counteracting the problem of an unbalanced dataset. The proposal is useful for the detection of broken bars in squirrel cage induction generators, which, according to the control system, were in a healthy state

    Analysis of the use of the Hanning Window for the measurement of interharmonic distortion caused by close tones in IEC standard framework

    Get PDF
    Producción CientíficaThe widespread use of devices based on power electronics and other nonlinear loads has led to an increase in harmonic distortion that affects the quality of power systems. Therefore, the correct measurement of harmonic and interharmonic content is necessary. The International Electrotechnical Commission (IEC) standards define the concepts of spectral and time grouping required for such measurements. This paper demonstrates that the procedures defined in the IEC standards are not sufficiently accurate when several close interharmonic tones interact due to the lack of stability of the values that the Discrete Fourier Transform obtains in each sampling window, and to the inaccuracy in the measurement of interharmonic groups and rates when using the Hanning window. This paper proposes novel solutions based on time aggregation and the use of other groupings and alternative windows. The results obtained are compared with the results produced by applying the rectangular window indicated in the standards, using sensitivity analysis varying one of the tones and using experimental results measuring the output signals of frequency inverters driving induction motors. The proposed method achieves greater accuracy and stability in the measurement of spectral groupings and their related distortion rates in signals with abundant and dispersed interharmonic content

    A study of the effects of time aggregation and overlapping within the framework of IEC standards for the measurement of harmonics and interharmonics

    Get PDF
    Producción CientíficaThe increasing incorporation of power electronics and other non-linear loads, in addition to their energy advantages, also implies a poor power quality, especially as regards harmonic pollution. Different solutions have been proposed to measure harmonic content, taking the International Electrotechnical Commission (IEC) standards as a reference. However, there are still some issues related to the measurement of the harmonic, and especially, interharmonic content. Some of those questions are addressed in this work, such as the problem derived from the instability of the values obtained by applying the discrete Fourier transform to each sampling window, or the appearance of local peaks when there are tones separated by multiples of the resolution. Solutions were proposed based on time aggregation and the overlapping of windows. The results demonstrate that aggregation time, window type, and overlapping can improve the accuracy in harmonic measurement using Fourier transform-based methods, as defined in the standards. The paper shows the need to consider spectral and time groupings together, improving results by using an appropriate percentage of overlap and an adaptation of the aggregation time to the harmonic content

    Mutual information and meta-heuristic classifiers applied to bearing fault diagnosis in three-phase induction motors

    Get PDF
    Producción CientíficaThree-phase induction motors are extensively used in industrial processes due to their robustness, adaptability to different operating conditions, and low operation and maintenance costs. Induction motor fault diagnosis has received special attention from industry since it can reduce process losses and ensure the reliable operation of industrial systems. Therefore, this paper presents a study on the use of meta-heuristic tools in the diagnosis of bearing failures in induction motors. The extraction of the fault characteristics is performed based on mutual information measurements between the stator current signals in the time domain. Then, the Artificial Bee Colony algorithm is used to select the relevant mutual information values and optimize the pattern classifier input data. To evaluate the classification accuracy under various levels of failure severity, the performance of two different pattern classifiers was compared: The C4.5 decision tree and the multi-layer artificial perceptron neural networks. The experimental results confirm the effectiveness of the proposed approach.Consejo Nacional de Desarrollo Científico y Tecnológico - (processes 474290/2008-5, 473576/2011-2, 552269/2011-5, 201902/2015-0 and 405228/2016-3

    Riesgo suicida y depresión en un grupo de internos de una cárcel del Quindío (Colombia)

    Get PDF
    Objetivo: caracterizar el riesgo suicida y depresión en internos de una cárcel del departamento del Quindío (Colombia). Metodología: se utilizó una metodología descriptiva-relacional y un diseño no experimental; se seleccionó una muestra de 34 reclusos entre los 18-51 años de acuerdo a criterios de inclusión y exclusión a quienes se les suministraron los cuestionarios ISO 30 e IDB. Resultados: más del 75% de los internos presentan riesgo suicida moderado o alto; el 56% reporta sintomatología depresiva grave y moderada. Se halló importante correlación entre estas dos variables. En la sub escala de afrontamiento de la ISO- 30 se encontró una media de 8,81, lo que la ubica con resultados significativos; las medias restantes están en valores medios. Conclusión: es significativo determinar factores de riesgo en esta población y fortalecer la investigación en este campo desde un enfoque interdisciplinario, lo cual facilitará la identificación precoz y prevención de la conducta suicida
    corecore