3,293 research outputs found

    A distributional approach to the geometry of dislocations at the mesoscale

    Get PDF
    We develop a theory to represent dislocated single crystals at the mesoscopic scale by considering concentrated effects, governed by the distribution theory combined with multiple-valued kinematic fields. Our approach gives a new understanding of the continuum theory of defects as developed by Kroener (1980) and other authors. Fundamental 2D identities relating the incompatibility tensor to the Frank and Burgers vectors are proved under global strain assumptions relying on the geometric measure theory, thereby giving rise to rigorous homogenisation from mesoscopic to macroscopic scale.Comment: article soumi

    On the seismic modelling of rotating B-type pulsators in the traditional approximation

    Get PDF
    The CoRoT and Kepler data revolutionised our view on stellar pulsation. For massive stars, the space data revealed the simultaneous presence of low-amplitude low-order modes and dominant high-order gravity modes in several B-type pulsators. The interpretation of such a rich set of detected oscillations requires new tools. We present computations of oscillations for B-type pulsators taking into account the effects of the Coriolis force in the so-called traditional approximation. We discuss the limitations of classical frequency matching to tune these stars seismically and show that the predictive power is limited in the case of high-order gravity mode pulsators, except if numerous modes of consecutive radial order can be identified.Comment: 8 pages, 4 figures. Paper submitted for publication in the Proceedings of the 61st Fujihara Seminar: Progress in solar/stellar physics with helio- and asteroseismology to appear in ASP Conference Serie

    A total linearization method for solving viscous free boundary flow problems by the finite element method

    Get PDF
    In this paper a total linearization method is derived for solving steady viscous free boundary flow problems (including capillary effects) by the finite element method. It is shown that the influence of the geometrical unknown in the totally linearized weak formulation can be expressed in terms of boundary integrals. This means that the implementation of the method is simple. Numerical experiments show that the iterative method gives accurate results and converges very fast

    Theoretical study of γ\gamma Doradus pulsations in pre-main sequence stars

    Full text link
    The question of the existence of pre-main sequence (PMS) γ\gamma~Doradus (γ\gamma~Dor) has been raised by the observations of young clusters such as NGC~884 hosting γ\gamma~Dor members. We have explored the properties of γ\gamma~Dor type pulsations in a grid of PMS models covering the mass range 1.2M<M<2.5M1.2 M_\odot < M_* < 2.5 M_\odot and we derive the theoretical instability strip (IS) for the PMS γ\gamma~Dor pulsators. We explore the possibility of distinguishing between PMS and MS γ\gamma~Dor by the behaviour of the period spacing of their high order gravitygravity-modes (gg-modes).Comment: 5 pages, 6 figures, Proc. HELAS IV Conference, Lanzarote, February 2010. Eds T. Roca Cort\'es, P. Pall\'e and S. Jim\'enez Reyes. Accepted in Astron. Nac

    Beyond Cumulated Gain and Average Precision: Including Willingness and Expectation in the User Model

    Full text link
    In this paper, we define a new metric family based on two concepts: The definition of the stopping criterion and the notion of satisfaction, where the former depends on the willingness and expectation of a user exploring search results. Both concepts have been discussed so far in the IR literature, but we argue in this paper that defining a proper single valued metric depends on merging them into a single conceptual framework

    Impact of helium diffusion and helium-flash-induced carbon production on gravity-mode pulsations in subdwarf B stars

    Get PDF
    Realistic stellar models are essential to the forward modelling approach in asteroseismology. For practicality however, certain model assumptions are also required. For example, in the case of subdwarf B stars, one usually starts with zero-age horizontal branch structures without following the progenitor evolution. We analyse the effects of common assumptions in subdwarf B models on the g-mode pulsational properties. We investigate if and how the pulsation periods are affected by the H-profile in the core-envelope transition zone. Furthermore, the effects of C-production and convective mixing during the core helium flash are evaluated. Finally, we reanalyse the effects of stellar opacities on the mode excitation in subdwarf B stars. We find that helium settling causes a shift in the theoretical blue edge of the g-mode instability domain to higher effective temperatures. This results in a closer match to the observed instability strip of long-period sdB pulsators, particularly for l<=3 modes. We show further that the g-mode spectrum is extremely sensitive to the H-profile in the core-envelope transition zone. If atomic diffusion is efficient, details of the initial shape of the profile become less important in the course of evolution. Diffusion broadens the chemical gradients, and results in less effective mode trapping and different pulsation periods. Furthermore, we report on the possible consequences of the He-flash for the g-modes. The outer edge of a flash-induced convective region introduces an additional chemical transition in the stellar models, and the corresponding spike in the Brunt-Vaisala frequency produces a complicated mode trapping signature in the period spacings.Comment: 9 pages, 6 figures, 1 table, accepted for publication in A&

    Non-adiabatic pulsations in ESTER models

    Full text link
    One of the greatest challenges in interpreting the pulsations of rapidly rotating stars is mode identification, i.e. correctly matching theoretical modes to observed pulsation frequencies. Indeed, the latest observations as well as current theoretical results show the complexity of pulsation spectra in such stars, and the lack of easily recognisable patterns. In the present contribution, the latest results on non-adiabatic effects in such pulsations are described, and we show how these come into play when identifying modes. These calculations fully take into account the effects of rapid rotation, including centrifugal distortion, and are based on models from the ESTER project, currently the only rapidly rotating models in which the energy conservation equation is satisfied, a prerequisite for calculating non-adiabatic effects. Non-adiabatic effects determine which modes are excited and play a key role in the near-surface pulsation-induced temperature variations which intervene in multi-colour amplitude ratios and phase differences, as well as line profile variations.Comment: Proceedings for the Joint TASC2 & KASC9 Workshop, Terceira, Azores, 201

    Asteroseismic inversions in the Kepler era: application to the Kepler Legacy sample

    Full text link
    In the past few years, the CoRoT and Kepler missions have carried out what is now called the space photometry revolution. This revolution is still ongoing thanks to K2 and will be continued by the Tess and Plato2.0 missions. However, the photometry revolution must also be followed by progress in stellar modelling, in order to lead to more precise and accurate determinations of fundamental stellar parameters such as masses, radii and ages. In this context, the long-lasting problems related to mixing processes in stellar interior is the main obstacle to further improvements of stellar modelling. In this contribution, we will apply structural asteroseismic inversion techniques to targets from the Kepler Legacy sample and analyse how these can help us constrain the fundamental parameters and mixing processes in these stars. Our approach is based on previous studies using the SOLA inversion technique to determine integrated quantities such as the mean density, the acoustic radius, and core conditions indicators, and has already been successfully applied to the 16Cyg binary system. We will show how this technique can be applied to the Kepler Legacy sample and how new indicators can help us to further constrain the chemical composition profiles of stars as well as provide stringent constraints on stellar ages.Comment: To appear in the proceedings of the Kasc 9 Tasc 2 worksho
    corecore