1,245 research outputs found

    The utility of ductal lavage in breast cancer detection and risk assessment

    Get PDF
    Ductal lavage (DL) permits noninvasive retrieval of epithelial cells from the breast. Clinical development of this technique has been fueled largely by its potential, as yet unproven, to improve detection of breast cancer and definition of individual risk for development of breast cancer. Early studies demonstrate the feasibility of performing this technique, provide data on cellular yield and findings, and demonstrate the ability to measure molecular markers in DL fluid. However, the sensitivity and specificity of DL for the detection of breast cancer remains unknown, as does the significance of atypia, particularly mild atypia, when found in DL fluid. Although DL appears safe and the device is approved by the US Food and Drug Administration, DL is still best utilized in the setting of clinical trials designed to resolve issues of sensitivity, specificity, and localization

    A comparison of the development of audiovisual integration in children with autism spectrum disorders and typically developing children

    Get PDF
    This study aimed to investigate the development of audiovisual integration in children with Autism Spectrum Disorder (ASD). Audiovisual integration was measured using the McGurk effect in children with ASD aged 7–16 years and typically developing children (control group) matched approximately for age, sex, nonverbal ability and verbal ability. Results showed that the children with ASD were delayed in visual accuracy and audiovisual integration compared to the control group. However, in the audiovisual integration measure, children with ASD appeared to ‘catch-up’ with their typically developing peers at the older age ranges. The suggestion that children with ASD show a deficit in audiovisual integration which diminishes with age has clinical implications for those assessing and treating these children

    Solving discrete logarithms on a 170-bit MNT curve by pairing reduction

    Get PDF
    Pairing based cryptography is in a dangerous position following the breakthroughs on discrete logarithms computations in finite fields of small characteristic. Remaining instances are built over finite fields of large characteristic and their security relies on the fact that the embedding field of the underlying curve is relatively large. How large is debatable. The aim of our work is to sustain the claim that the combination of degree 3 embedding and too small finite fields obviously does not provide enough security. As a computational example, we solve the DLP on a 170-bit MNT curve, by exploiting the pairing embedding to a 508-bit, degree-3 extension of the base field.Comment: to appear in the Lecture Notes in Computer Science (LNCS

    The modern pollen-vegetation relationship of a tropical forest-savannah mosaic landscape, Ghana, West Africa

    Get PDF
    Transitions between forest and savannah vegetation types in fossil pollen records are often poorly understood due to over-production by taxa such as Poaceae and a lack of modern pollen-vegetation studies. Here, modern pollen assemblages from within a forest-savannah transition in West Africa are presented and compared, their characteristic taxa discussed, and implications for the fossil record considered. Fifteen artificial pollen traps were deployed for 1 year, to collect pollen rain from three vegetation plots within the forest-savannah transition in Ghana. High percentages of Poaceae and Melastomataceae/Combretaceae were recorded in all three plots. Erythrophleum suaveolens characterised the forest plot, Manilkara obovata the transition plot and Terminalia the savannah plot. The results indicate that Poaceae pollen influx rates provide the best representation of the forest-savannah gradient, and that a Poaceae abundance of >40% should be considered as indicative of savannah-type vegetation in the fossil record

    Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children

    Get PDF
    BACKGROUND: Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). METHODS: A total of 71 subjects (6–60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). RESULTS: Success rate was high (≥ 84%) in both devices for both adults and children. The subjects represented a FE(NO )range of 8–147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. CONCLUSION: The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children. The new hand-held device will enable the introduction of exhaled NO measurements into the primary health care

    Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis

    Get PDF
    Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles

    Genome wide association for substance dependence: convergent results from epidemiologic and research volunteer samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dependences on addictive substances are substantially-heritable complex disorders whose molecular genetic bases have been partially elucidated by studies that have largely focused on research volunteers, including those recruited in Baltimore. Maryland. Subjects recruited from the Baltimore site of the Epidemiological Catchment Area (ECA) study provide a potentially-useful comparison group for possible confounding features that might arise from selecting research volunteer samples of substance dependent and control individuals. We now report novel SNP (single nucleotide polymorphism) genome wide association (GWA) results for vulnerability to substance dependence in ECA participants, who were initially ascertained as members of a probability sample from Baltimore, and compare the results to those from ethnically-matched Baltimore research volunteers.</p> <p>Results</p> <p>We identify substantial overlap between the home address zip codes reported by members of these two samples. We find overlapping clusters of SNPs whose allele frequencies differ with nominal significance between substance dependent <it>vs </it>control individuals in both samples. These overlapping clusters of nominally-positive SNPs identify 172 genes in ways that are never found by chance in Monte Carlo simulation studies. Comparison with data from human expressed sequence tags suggests that these genes are expressed in brain, especially in hippocampus and amygdala, to extents that are greater than chance.</p> <p>Conclusion</p> <p>The convergent results from these probability sample and research volunteer sample datasets support prior genome wide association results. They fail to support the idea that large portions of the molecular genetic results for vulnerability to substance dependence derive from factors that are limited to research volunteers.</p

    Genomic Regions Identified by Overlapping Clusters of Nominally-Positive SNPs from Genome-Wide Studies of Alcohol and Illegal Substance Dependence

    Get PDF
    Declaring “replication” from results of genome wide association (GWA) studies is straightforward when major gene effects provide genome-wide significance for association of the same allele of the same SNP in each of multiple independent samples. However, such unambiguous replication is unlikely when phenotypes display polygenic genetic architecture, allelic heterogeneity, locus heterogeneity and when different samples display linkage disequilibria with different fine structures. We seek chromosomal regions that are tagged by clustered SNPs that display nominally-significant association in each of several independent samples. This approach provides one “nontemplate” approach to identifying overall replication of groups of GWA results in the face of difficult genetic architectures. We apply this strategy to 1 M SNP GWA results for dependence on: a) alcohol (including many individuals with dependence on other addictive substances) and b) at least one illegal substance (including many individuals dependent on alcohol). This approach provides high confidence in rejecting the null hypothesis that chance alone accounts for the extent to which clustered, nominally-significant SNPs from samples of the same racial/ethnic background identify the same sets of chromosomal regions. It identifies several genes that are also reported in other independent alcohol-dependence GWA datasets. There is more modest confidence in: a) identification of individual chromosomal regions and genes that are not also identified by data from other independent samples, b) the more modest overlap between results from samples of different racial/ethnic backgrounds and c) the extent to which any gene not identified herein is excluded, since the power of each of these individual samples is modest. Nevertheless, the strong overlap identified among the samples with similar racial/ethnic backgrounds supports contributions to individual differences in vulnerability to addictions that come from newer allelic variants that are common in subsets of current humans

    Analysis of Chimpanzee History Based on Genome Sequence Alignments

    Get PDF
    Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously available. We show that bonobos and common chimpanzees were separated ∼1,290,000 years ago, western and other common chimpanzees ∼510,000 years ago, and eastern and central chimpanzees at least 50,000 years ago. We infer that the central chimpanzee population size increased by at least a factor of 4 since its separation from western chimpanzees, while the western chimpanzee effective population size decreased. Surprisingly, in about one percent of the genome, the genetic relationships between humans, chimpanzees, and bonobos appear to be different from the species relationships. We used PCR-based resequencing to confirm 11 regions where chimpanzees and bonobos are not most closely related. Study of such loci should provide information about the period of time 5–7 million years ago when the ancestors of humans separated from those of the chimpanzees
    corecore