35 research outputs found

    The SUBGLACIOR drilling probe: hydraulic considerations

    No full text
    International audienceAbstract Using significant technological breakthroughs and unconventional approaches, the goal of the in situ probing of glacier ice for a better understanding of the orbital response of climate (SUBGLACIOR) project is to advance ice core research by inventing, constructing and testing an in situ probe to evaluate if a target site is suitable for recovering ice as old as 1.5 million years. Embedding a laser spectrometer, the probe is intended to make its own way down into the ice and to measure, in real time and down to the bedrock, the depth profiles of the ice δD water isotopes as well as the trapped CH 4 gas concentration and dust concentration. The probe descent is achieved through electromechanical drilling combined with continuous meltwater sample production using a central melting finger in the drill head. A key aspect of the project lies in the design and implementation of an efficient method to continuously transfer to the surface the ice chips being produced by the drill head and from the refreezed water expulsed downstream from the melting finger, into the borehole. This paper presents a detailed calculation and analysis of the flow rates and pressure conditions required to overcome friction losses of the drilling fluid and to effectively transport ice chips to the surface

    The SUBGLACIOR drilling probe: Concept and design

    No full text
    In response to the 'oldest ice' challenge initiated by the International Partnerships in Ice Core Sciences (IPICS), new rapid-access drilling technologies through glacier ice need to be developed. These will provide the information needed to qualify potential sites on the Antarctic ice sheet where the deepest section could include ice that is >1 Ma old and still in good stratigraphic order. Identifying a suitable site will be a prerequisite for deploying a multi-year deep ice-core drilling operation to elucidate the cause and mechanisms of the mid-Pleistocene transition from 40 ka glacial-interglacial cycles to 100 ka cycles. As part of the ICE&LASERS/SUBGLACIOR projects, we have designed an innovative probe, SUBGLACIOR, with the aim of perforating the ice sheet down to the bedrock in a single season and continuously measuring in situ the isotopic composition of the melted water and the methane concentration in trapped gases. Here we present the general concept of the probe, as well as the various technological solutions that we have favored so far to reach this goal. © 2014, International Glaciology Society. All rights reserved

    The SUBGLACIOR drilling probe: concept and design

    No full text
    International audienceIn response to the 'oldest ice' challenge initiated by the International Partnerships in Ice Core Sciences (IPICS), new rapid-access drilling technologies through glacier ice need to be developed. These will provide the information needed to qualify potential sites on the Antarctic ice sheet where the deepest section could include ice that is >1 Ma old and still in good stratigraphic order. Identifying a suitable site will be a prerequisite for deploying a multi-year deep ice-core drilling operation to elucidate the cause and mechanisms of the mid-Pleistocene transition from 40 ka glacial-interglacial cycles to 100 ka cycles. As part of the ICE&LASERS/SUBGLACIOR projects, we have designed an innovative probe, SUBGLACIOR, with the aim of perforating the ice sheet down to the bedrock in a single season and continuously measuring in situ the isotopic composition of the melted water and the methane concentration in trapped gases. Here we present the general concept of the probe, as well as the various technological solutions that we have favored so far to reach this goal
    corecore