45 research outputs found

    Dynamics of the IFMIF very high-intensity beam

    Get PDF
    AbstractFor the purpose of material studies for future nuclear fusion reactors, the IFMIF deuteron beams present a simultaneous combination of unprecedentedly high intensity (2 × 125 mA CW), power (2 × 5 MW) and space charge. Special considerations and new concepts have been developed in order to overcome these challenges. The global strategy for beam dynamics design of the 40 MeV IFMIF accelerators is presented, stressing on the control of micro-losses, and the possibility of online fine tuning. Start-to-end simulations without and with errors are presented for the prototype accelerator. Considerations about conflicts between halo and emittance minimization are then discussed in this very high space charge context

    The SPL (II) at CERN, a Superconducting 3.5 GeV H- Linac

    Get PDF
    A revision of the physics needs and recent progress in the technology of superconducting (SC) RF cavities have triggered major changes in the design of a SC H-linac at CERN. With up to 5MW beam power, the SPL can be the proton driver for a next generation ISOL-type radioactive beam facility (ĂąEURISOLĂą) and/or supply protons to a neutrino () facility (conventional superbeam + beta-beam or -factory). Furthermore the SPL can replace Linac2 and the PS booster (PSB), improving significantly the beam performance in terms of brightness, intensity, and reliability for the benefit of all proton users at CERN, including LHC and its luminosity upgrade. Compared with the first conceptual design, the beam energy is almost doubled (3.5GeV instead of 2.2 GeV) while the length is reduced by 40%. At a repetition rate of 50 Hz, the linac reuses decommissioned 352.2MHz RF equipment from LEP in the low-energy part. Beyond 90MeV the RF frequency is doubled, and from 180MeV onwards high-gradient SC bulkniobium cavities accelerate the beam to its final energy of 3.5GeV. This paper presents the overall design approach, together with the technical progress since the first conceptual design in 2000

    Conceptual design of the SPL II: A high-power superconducting H−H^- linac at CERN

    Get PDF
    An analysis of the revised physics needs and recent progress in the technology of superconducting RF cavities have led to major changes in the speci cation and in the design for a Superconducting Proton Linac (SPL) at CERN. Compared with the rst conceptual design report (CERN 2000012) the beam energy is almost doubled (3.5 GeV instead of 2.2 GeV), while the length of the linac is reduced by 40% and the repetition rate is reduced to 50 Hz. The basic beam power is at a level of 45MW and the approach chosen offers enough margins for upgrades. With this high beam power, the SPL can be the proton driver for an ISOL-type radioactive ion beam facility of the next generation (`EURISOL'), and for a neutrino facility based on superbeam C beta-beam or on muon decay in a storage ring (`neutrino factory'). The SPL can also replace the Linac2 and PS Booster in the low-energy part of the CERN proton accelerator complex, improving signi cantly the beam performance in terms of brightness and intensity for the bene t of all users including the LHC and its luminosity upgrade. Decommissioned LEP klystrons and RF equipment are used to provide RF power at a frequency of 352.2 MHz in the lowenergy part of the accelerator. Beyond 90 MeV, the RF frequency is doubled to take advantage of more compact normal-conducting accelerating structures up to an energy of 180 MeV. From there, state-ofthe- art, high-gradient, bulk-niobium superconducting cavities accelerate the beam up to its nal energy of 3.5 GeV. The overall design approach is presented, together with the progress that has been achieved since the publication of the rst conceptual design report

    Antibody Responses to NY-ESO-1 in Primary Breast Cancer Identify a Subtype Target for Immunotherapy

    Get PDF
    The highly immunogenic human tumor antigen NY-ESO-1 (ESO) is a target of choice for anti-cancer immune therapy. In this study, we assessed spontaneous antibody (Ab) responses to ESO in a large cohort of patients with primary breast cancer (BC) and addressed the correlation between the presence of anti-ESO Ab, the expression of ESO in the tumors and their characteristics. We found detectable Ab responses to ESO in 1% of the patients. Tumors from patients with circulating Ab to ESO exhibited common characteristics, being mainly hormone receptor (HR)− invasive ductal carcinomas of high grade, including both HER2− and HER2+ tumors. In line with these results, we detected ESO expression in 20% of primary HR− BC, including both ESO Ab+ and Ab− patients, but not in HR+ BC. Interestingly, whereas expression levels in ESO+ BC were not significantly different between ESO Ab+ and Ab− patients, the former had, in average, significantly higher numbers of tumor-infiltrated lymph nodes, indicating that lymph node invasion may be required for the development of spontaneous anti-tumor immune responses. Thus, the presence of ESO Ab identifies a tumor subtype of HR− (HER2− or HER2+) primary BC with frequent ESO expression and, together with the assessment of antigen expression in the tumor, may be instrumental for the selection of patients for whom ESO-based immunotherapy may complement standard therapy

    NY-ESO-1-Specific Circulating CD4+ T Cells in Ovarian Cancer Patients Are Prevalently TH1 Type Cells Undetectable in the CD25+FOXP3+Treg Compartment

    Get PDF
    Spontaneous CD4+ T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4+ T cells in EOC patients with spontaneous immune responses to the antigen are prevalently TH1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer+ cells ex vivo, at an average frequency of 1∶25000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer+ cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25+FOXP3+Treg. Thus, spontaneous CD4+ T-cell responses to ESO in cancer patients are prevalently of TH1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines

    Two Octave Phemt Power Amplifier for EW Applications

    Get PDF
    Two 4.5-18 GHz MMIC amplifiers have been designed and fully tested. They have been fabricated using the Power pHemt process available at TriQuint Semiconductor, Texas. The first amplifier is a one stage distributed power amplifier which has been power optimised and exhibits 1W CW output power for a 6 dB associated gain. The second amplifier is a 2W three stage power amplifier with 20 dB gain. They are part of a first run launched in order to evaluate the different wideband structures and to improve linear and non linear models

    An athermal measurement technique for long traps characterization in GaN HEMT transistors.

    No full text
    International audienceGaN High Electron Mobility Transistors (HEMTs) is very promising for high power switching and radiofrequency operation. However, the lack of reliability feedback is one of its major drawbacks. Trapping effect especially is one of the main performance limitations of such components. Many measurement techniques exist for trapping effects characterization, especially for short traps (”s to several ms). However for longer time constants, self-heating may distort the measurements. This paper presents an electrical and athermal transient measurement method which has been developed to study the trapping and detrapping time constants of such components. It allows the extraction of long transients without self-heating problems and is usable in long term electrical stress experiments. A simulation of this method with a simplified component's model and the measurements results are presented. With this technique, we investigated especially the long time constants (τ>20 ms) over a range of temperature from 10°C to 90°C. We observed three thermally activated trap signatures on GaN devices with our method

    Status of the llrf system for SARAF phase II

    No full text
    International audienceCEA is committed to the design, construction and commissioning of a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40 MeV. The Low Level RF (LLRF) is a subsystem of the CEA control domain for the SARAF-LINAC instrumentation. The top level requirement of the LLRF system has been presented in the last LLRF conference. The paper shows a simulink model to analyse and determinate the LLRF technical specification. The public bidding for SARAF LLRF is in the last phase: discussion with the selected company. The first prototype test will be performed at the start of 2020
    corecore