89 research outputs found

    Srs2 removes deadly recombination intermediates independently of its interaction with SUMO-modified PCNA

    Get PDF
    Saccharomyces cerevisiae Srs2 helicase plays at least two distinct functions. One is to prevent recombinational repair through its recruitment by sumoylated Proliferating Cell Nuclear Antigen (PCNA), evidenced in postreplication-repair deficient cells, and a second one is to eliminate potentially lethal intermediates formed by recombination proteins. Both actions are believed to involve the capacity of Srs2 to displace Rad51 upon translocation on single-stranded DNA (ssDNA), though a role of its helicase activity may be important to remove some toxic recombination structures. Here, we described two new mutants, srs2R1 and srs2R3, that have lost the ability to hinder recombinational repair in postreplication-repair mutants, but are still able to remove toxic recombination structures. Although the mutants present very similar phenotypes, the mutated proteins are differently affected in their biochemical activities. Srs2R1 has lost its capacity to interact with sumoylated PCNA while the biochemical activities of Srs2R3 are attenuated (ATPase, helicase, DNA binding and ability to displace Rad51 from ssDNA). In addition, crossover (CO) frequencies are increased in both mutants. The different roles of Srs2, in relation to its eventual recruitment by sumoylated PCNA, are discussed

    Rad51 Polymerization Reveals a New Chromatin Remodeling Mechanism

    Get PDF
    Rad51 protein is a well known protagonist of homologous recombination in eukaryotic cells. Rad51 polymerization on single-stranded DNA and its role in presynaptic filament formation have been extensively documented. Rad51 polymerizes also on double-stranded DNA but the significance of this filament formation remains unclear. We explored the behavior of Saccharomyces cerevisiae Rad51 on dsDNA and the influence of nucleosomes on Rad51 polymerization mechanism to investigate its putative role in chromatin accessibility to recombination machinery. We combined biochemical approaches, transmission electron microscopy (TEM) and atomic force microscopy (AFM) for analysis of the effects of the Rad51 filament on chromatinized templates. Quantitative analyses clearly demonstrated the occurrence of chromatin remodeling during nucleoprotein filament formation. During Rad51 polymerization, recombinase proteins moved all the nucleosomal arrays in front of the progressing filament. This polymerization process had a powerful remodeling effect, as Rad51 destabilized the nucleosomes along considerable stretches of DNA. Similar behavior was observed with RecA. Thus, recombinase polymerization is a powerful mechanism of chromatin remodeling. These remarkable features open up new possibilities for understanding DNA recombination and reveal new types of ATP-dependent chromatin dynamics

    Cdk1 Targets Srs2 to Complete Synthesis-Dependent Strand Annealing and to Promote Recombinational Repair

    Get PDF
    Cdk1 kinase phosphorylates budding yeast Srs2, a member of UvrD protein family, displays both DNA translocation and DNA unwinding activities in vitro. Srs2 prevents homologous recombination by dismantling Rad51 filaments and is also required for double-strand break (DSB) repair. Here we examine the biological significance of Cdk1-dependent phosphorylation of Srs2, using mutants that constitutively express the phosphorylated or unphosphorylated protein isoforms. We found that Cdk1 targets Srs2 to repair DSB and, in particular, to complete synthesis-dependent strand annealing, likely controlling the disassembly of a D-loop intermediate. Cdk1-dependent phosphorylation controls turnover of Srs2 at the invading strand; and, in absence of this modification, the turnover of Rad51 is not affected. Further analysis of the recombination phenotypes of the srs2 phospho-mutants showed that Srs2 phosphorylation is not required for the removal of toxic Rad51 nucleofilaments, although it is essential for cell survival, when DNA breaks are channeled into homologous recombinational repair. Cdk1-targeted Srs2 displays a PCNA–independent role and appears to have an attenuated ability to inhibit recombination. Finally, the recombination defects of unphosphorylatable Srs2 are primarily due to unscheduled accumulation of the Srs2 protein in a sumoylated form. Thus, the Srs2 anti-recombination function in removing toxic Rad51 filaments is genetically separable from its role in promoting recombinational repair, which depends exclusively on Cdk1-dependent phosphorylation. We suggest that Cdk1 kinase counteracts unscheduled sumoylation of Srs2 and targets Srs2 to dismantle specific DNA structures, such as the D-loops, in a helicase-dependent manner during homologous recombinational repair

    The SUMO Isopeptidase Ulp2p Is Required to Prevent Recombination-Induced Chromosome Segregation Lethality following DNA Replication Stress

    Get PDF
    SUMO conjugation is a key regulator of the cellular response to DNA replication stress, acting in part to control recombination at stalled DNA replication forks. Here we examine recombination-related phenotypes in yeast mutants defective for the SUMO de-conjugating/chain-editing enzyme Ulp2p. We find that spontaneous recombination is elevated in ulp2 strains and that recombination DNA repair is essential for ulp2 survival. In contrast to other SUMO pathway mutants, however, the frequency of spontaneous chromosome rearrangements is markedly reduced in ulp2 strains, and some types of rearrangements arising through recombination can apparently not be tolerated. In investigating the basis for this, we find DNA repair foci do not disassemble in ulp2 cells during recovery from the replication fork-blocking drug methyl methanesulfonate (MMS), corresponding with an accumulation of X-shaped recombination intermediates. ulp2 cells satisfy the DNA damage checkpoint during MMS recovery and commit to chromosome segregation with similar kinetics to wild-type cells. However, sister chromatids fail to disjoin, resulting in abortive chromosome segregation and cell lethality. This chromosome segregation defect can be rescued by overproducing the anti-recombinase Srs2p, indicating that recombination plays an underlying causal role in blocking chromatid separation. Overall, our results are consistent with a role for Ulp2p in preventing the formation of DNA lesions that must be repaired through recombination. At the same time, Ulp2p is also required to either suppress or resolve recombination-induced attachments between sister chromatids. These opposing defects may synergize to greatly increase the toxicity of DNA replication stress

    The Pricing Behaviour of Firms in the Euro Area: New Survey Evidence

    Full text link

    RNA Nanostructure Molecular Imaging

    No full text
    International audienceThis volume looks at the different spectroscopic and biophysical methods used by researchers to study the structure and folding of RNA, and to follow their interactions with proteins. The chapters in this book cover topics such as single-molecule spectroscopy of multiple RNA species; surface plasmon resonance, MS or microcalorimetry for investigating molecular interactions with RNA; FTIR, SAXS, SANS and SRCD spectroscopies to analyze RNA structure; use of fluorescent nucleotides to map RNA-binding sites on proteins surfaces or CryoEM; and much more. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls
    corecore