35 research outputs found

    Soil’s Hidden Power : The Stable Soil Organic Carbon Pool Controls the Burden of Persistent Organic Pollutants in Background Soils

    Get PDF
    Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air–surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models

    Data from: Simultaneous removal of fluoride and arsenic in geothermal water in Tibet using modified yak dung biochar as an adsorbent

    No full text
    Fluoride (F) and arsenic (As) are two typical and harmful elements that are found in high concentrations in geothermal water in Tibet. In the present work, yak dung, an abundant source of biomass energy in Tibet, was made into biochars (BC1, BC2 and BC3) by pyrolysis under different conditions, and the better biochar was modified by FeCl2 (Fe-BC3). The adsorption conditions were optimized to adsorb F and As in geothermal water. The results showed that BC3 can remove 90% F- and 20% As(V), which is the best effect of the three initial biochars. Fe-BC3 could remove 94% F- and 99.45% As(V) under the same conditions as BC3, which was an adsorbent dosage 10 g/L, pH 5-6 and temperature of 25 °C. It was also demonstrated that the removal rate did not decrease at 80 °C. A quasi-second-order kinetic model best described the adsorption behavior of ions on the surface of the biochar. The maximum adsorption capacity of F- and As(V) on Fe-BC3 was 3.928 mg/g and 2.926 mg/g, respectively. The features of Fe-BC3 were characterized by X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Brunauer-Emmett-Teller (BET), Energy Dispersive Spectrometer (EDS), and Scanning Electron Microscopy (SEM) to understand the adsorption process

    Heavy metals levels in fish from aquaculture farms and risk assessment in Lhasa, Tibetan Autonomous Region of China

    No full text
    Fish is consumed as a common food by humans due to its nutritional and therapeutic benefits. However, they can accumulate toxic chemicals (such as heavy metals, persistent organic pollutants) from water and food chain. Very few studies have been investigated on heavy metal contents in fish from Tibetan Autonomous Region of China. In order to study heavy metals levels in fish from aquaculture farms and evaluate the risk that human consume fish in this area, we collected four types of aquaculture fish species (6 big-head carps, 5 grass carps, 5 carps and 5 tilapias) from fisheries around Lhasa city in this study. 9 heavy metals (Cr, As, Cd, Pb, Cu, Ba, Co, Mn and V) in different tissues of fish were determined by an inductively coupled plasma mass spectrometer. Cr, Ba, Co, Mn and V could easily accumulate in the gill, and Cu was detected in the hearts of all the fishes. Toxic metal (As, Cd and Pb) contents were higher in the liver than those in other tissues, heavy metal levels were the lowest in the muscle among all tissues. Most of heavy metal concentrations in the tilapia tissues were higher than those in other fish tissues, especially arsenic. Arsenic content in the tilapia samples was similar to 2-4 times higher than the maximum levels (MLs) of contaminants in the national standard, and other metals were all lower than the MLs. Compared the estimated daily intake of heavy metals through fish consumption with tolerable daily intakes recommended by FAO, the metals daily intake of As, Cd and Pb from fish consumption might not pose serious health risk to the local inhabitants. It is therefore necessary to determine the dose level for human, which is considered to be taken daily over a lifetime without adverse effects

    Combined Transcriptome and Metabolome Analysis of a New Species of Microalgae from the Tibetan Plateau and Its Response to Sewage Treatment

    No full text
    Microalgae are pivotal in maintaining water quality in the lakes and rivers of Qinghai-Tibet plateau. The optimum sewage treatment conditions for Desmodesmus sp. Are, temperature: 20–25 °C, light intensity: 3000–8000 lx, and pH: 7.0–7.5, identified based on orthogonal experiments. The maximum removal rate of total nitrogen, total phosphorus, and chemical oxygen demand was more than 95% in the actual sewage treatment. The sewage treatment capacity of Desmodesmus sp. From plateau is higher than that from plains under the same treatment conditions. To identify the differentially expressed genes and metabolites in Desmodesmus sp. In response to sewage treatment, a combination of metabolomics and transcriptomics was employed to the microalgae with and without sewage treatment. The results showed that the oxidative phosphorylation, photosynthesis, and propanoate metabolism pathways were the most significantly enriched pathways in sewage treatment. Furthermore, the metabolism of adenosine diphosphate, 2-oxobutanoate, and succinate were significantly upregulated, downregulated, and both upregulated and downregulated, respectively, as shown by the combined transcriptome and metabolome analysis. Additionally, we found that sewage treatment could also induce numerous changes in the primary metabolism, such as carbohydrate, fatty acid biosynthesis, and amino acid metabolism when compared with control. Overall, our results should improve fundamental knowledge of molecular responses to Desmodesmus sp. in sewage treatment and contribute to the design of strategies in microalgae response to sewage treatment

    Short-Chain Fatty Acids Production from Anaerobic Fermentation of Sewage Sludge: The Effect of Higher Levels Polyaluminium Chloride

    No full text
    With the annual increase in the sludge production in China’s sewage treatment plants, the problem of sewage sludge treatment and disposal is becoming more and more serious. Anaerobic fermentation can convert complex organic matter in sewage sludge into short-chain fatty acid, hydrogen, methane and other resources and is an effective method for sewage sludge treatment and disposal. At the same time, sewage sludge often contains flocculants, which will inevitably affect the effect of anaerobic fermentation. As a high-performance flocculant, polyaluminum chloride (PAC) is widely used in wastewater treatment and sewage sludge dewatering processes. Previous studies indicated that lower levels of PAC inhibit the effect of the anaerobic fermentation process of sewage sludge; on the other hand, it is necessary to understand the effects of higher levels of PAC in anaerobically fermented sewage sludge. The results showed that higher levels (0.2–1 g Al/g total solids (TS)) of PAC could promote acid production from anaerobically fermented sewage sludge. Moreover, mechanism studies suggest that higher levels (0.2–1 g Al/g total solids (TS)) of PAC caused excessive adsorption of the charge on the surface of the sewage sludge colloid and reversed the charge. The sewage sludge colloid was stabilized again, which increases the concentration of soluble proteins, polysaccharides, and soluble extracellular polymers (S-EPS) in the fermentation broth, thereby improving the anaerobically fermented sewage sludge efficiency. The results provided from this study may act as technical reference and guidance for the engineering application of sewage sludge anaerobic fermentation

    Sequential Ubiquitination and Phosphorylation Epigenetics Reshaping by MG132‐Loaded Fe‐MOF Disarms Treatment Resistance to Repulse Metastatic Colorectal Cancer

    No full text
    Abstract Abnormal epigenetic regulation is identified to correlate with cancer progression and renders tumor refractory and resistant to reactive oxygen species (ROS)‐based anti‐tumor actions. To address it, a sequential ubiquitination and phosphorylation epigenetics modulation strategy is developed and exemplified by the well‐established Fe‐metal‐organic framework (Fe‐MOF)‐based chemodynamic therapy (CDT) nanoplatforms that load the 26S proteasome inhibitor (i.e., MG132). The encapsulated MG132 can blockade 26S proteasome, terminate ubiquitination, and further inhibit transcription factor phosphorylation (e.g., NF‐ÎșB p65), which can boost pro‐apoptotic or misfolded protein accumulations, disrupt tumor homeostasis, and down‐regulate driving genes expression of metastatic colorectal cancer (mCRC). Contributed by them, Fe‐MOF‐unlocked CDT is magnified to considerably elevate ROS content for repulsing mCRC, especially after combining with macrophage membrane coating‐enabled tropism accumulation. Systematic experiments reveal the mechanism and signaling pathway of such a sequential ubiquitination and phosphorylation epigenetics modulation and explain how it could blockade ubiquitination and phosphorylation to liberate the therapy resistance to ROS and activate NF‐ÎșB‐related acute immune responses. This unprecedented sequential epigenetics modulation lays a solid foundation to magnify oxidative stress and can serve as a general method to enhance other ROS‐based anti‐tumor methods

    Correlations of Molecular Weights of ÎČ-Glucans from Qingke (Tibetan Hulless Barley) to Their Multiple Bioactivities

    No full text
    β-glucans have been considered the major bioactive components in Qingke (Tibetan hulless barley). However, the structure–function relationships of β-glucans from Qingke have seldom been investigated. Whether the bioactivities of Qingke β-glucans are closely correlated to their molecular weights remains unknown. Therefore, in order to explore Qingke β-glucans as functional/healthy food ingredients for industrial applications, and to better understand their structure–function relationships, correlations of molecular weights of Qingke β-glucans to their in vitro binding properties, inhibitory activities on digestive enzymes (α-amylase and pancreatic lipase), anti-inflammatory activities, and anticancer activities were systematically investigated. Results showed that the in vitro binding properties and the inhibitory activities on α-amylase and pancreatic lipase of Qingke β-glucans were positively correlated to their molecular weights. However, the anti-inflammatory activities of Qingke β-glucans increased as their molecular weights decreased. Furthermore, Qingke β-glucans exhibited selectively anti-cancer activities in vitro. Positive and negative correlations of molecular weights to inhibitory effects against A549 cells and MDA-MB-231 cells were observed, respectively. However, the inhibitory effects of Qingke β-glucans against HCT116 cells were not associated with their molecular weights. Results suggested that the molecular weights of Qingke β-glucans significantly affected their bioactivities, which was beneficial for a better understanding of their structure–function relationships. Moreover, results showed that Qingke β-glucans could be further explored as functional/healthy food ingredients for industrial applications due to their multiple health benefits

    Fig 3 -

    No full text
    (a) Type and number of individual variants in the entire sample. (b) SNP/InDel distribution in the entire gene mountain was calculated using a 50 bp window. (c) Distribution of individual variants across the entire gene in the entire sample.</p

    Ultrastructure of <i>Desmodesmus</i> sp. cells.

    No full text
    (a) Overall view of the cell. (b–d) Regions of chloroplasts. Ch: Chloroplast; Cw: cell wall; N: nucleus; Ob: oil body; P: protein nucleus; Pg: plastid pellet; S: starch grain; T: cell nucleus.</p
    corecore