9 research outputs found
Open-label comparative clinical study of chlorproguanil-dapsone fixed dose combination (Lapdap) alone or with three different doses of artesunate for uncomplicated Plasmodium falciparum malaria.
UNLABELLED: The objective of this study was to determine the appropriate dose of artesunate for use in a fixed dose combination therapy with chlorproguanil-dapsone (CPG-DDS) for the treatment of uncomplicated falciparum malaria. METHODS: Open-label clinical trial comparing CPG-DDS alone or with artesunate 4, 2, or 1 mg/kg at medical centers in Blantyre, Malawi and Farafenni, The Gambia. The trial was conducted between June 2002 and February 2005, including 116 adults (median age 27 years) and 107 children (median age 38 months) with acute uncomplicated Plasmodium falciparum malaria. Subjects were randomized into 4 groups to receive CPG-DDS alone or plus 4, 2 or 1 mg/kg of artesunate once daily for 3 days. Assessments took place on Days 0-3 in hospital and follow-up on Days 7 and 14 as out-patients. Efficacy was evaluated in the Day 3 per-protocol (PP) population using mean time to reduce baseline parasitemia by 90% (PC90). A number of secondary outcomes were also included. Appropriate artesunate dose was determined using a pre-defined decision matrix based on primary and secondary outcomes. Treatment emergent adverse events were recorded from clinical assessments and blood parameters. Safety was evaluated in the intent to treat (ITT) population. RESULTS: In the Day 3 PP population for the adult group (N = 85), mean time to PC90 was 19.1 h in the CPG-DDS group, significantly longer than for the +artesunate 1 mg/kg (12.5 h; treatment difference -6.6 h [95%CI -11.8, -1.5]), 2 mg/kg (10.7 h; -8.4 h [95%CI -13.6, -3.2]) and 4 mg/kg (10.3 h; -8.7 h [95%CI -14.1, -3.2]) groups. For children in the Day 3 PP population (N = 92), mean time to PC90 was 21.1 h in the CPG-DDS group, similar to the +artesunate 1 mg/kg group (17.7 h; -3.3 h [95%CI -8.6, 2.0]), though the +artesunate 2 mg/kg and 4 mg/kg groups had significantly shorter mean times to PC90 versus CPG-DDS; 14.4 h (treatment difference -6.4 h [95%CI -11.7, -1.0]) and 12.8 h (-7.4 h [95%CI -12.9, -1.8]), respectively. An analysis of mean time to PC90 for the Day 14 PP and ITT populations was consistent with the primary analysis. Treatment emergent, drug-related adverse events were experienced in 35.3% (41/116) of adults and 70.1% (75/107) of children; mostly hematological and gastroenterological. The nature and incidence of adverse events was similar between the groups. No dose-related changes in laboratory parameters were observed. Nine serious adverse events due to any cause occurred in five subjects including two cases of hemolysis believed to be associated with drug treatment (one adult, one child). One adult died of anaphylactic shock, not associated with investigational therapy. CONCLUSIONS: CPG-DDS plus artesunate demonstrated advantages over CPG-DDS alone for the primary efficacy endpoint (mean time to PC90) except in children for the 1 mg/kg artesunate dose. Based on a pre-defined decision matrix, the primary endpoint in the child group supported an artesunate dose of 4 mg/kg. Secondary endpoints also supported a 4 mg/kg artesunate dose to take forward into the remainder of the development program. TRIAL REGISTRATION: ClinicalTrials.gov NCT00519467
Reduction of Malaria Transmission to Anopheles Mosquitoes with a Six-Dose Regimen of Co-Artemether
BACKGROUND: Resistance of malaria parasites to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs. METHODS AND FINDINGS: In a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91), or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet]) (n = 406). Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes. Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001). Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001) and were less infectious to mosquitoes at day 7 (p < 0.001) than carriers who had received CQ/SP. CONCLUSIONS: Co-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites
Seasonal carriage of pfcrt and pfmdr1 alleles in Gambian Plasmodium falciparum imply reduced fitness of chloroquine-resistant parasites.
BACKGROUND: Observations in natural Plasmodium falciparum populations after removal of failing drugs suggest that there is a fitness cost of drug resistance. METHODS: To examine the effect of transient removal of drug pressure, we analyzed seasonal changes in the prevalence of chloroquine (CQ)-resistant parasite genotypes in The Gambia. Parasite isolates from 441 children presenting with uncomplicated falciparum malaria over 5 seasons (1998-2002) were linked to weekly rainfall data. RESULTS: The prevalence of CQ-resistant parasites increased slightly over 5 years, with the 76T allele of pfcrt (odds ratio [OR] per year, 1.16; P=.03) and the 86Y allele of pfmdr1 (OR per year, 1.18; P=.02) becoming significantly more common. However, intraseasonal analysis showed that these alleles decreased in prevalence each dry season. Wild-type parasites with respect to both loci predominated as transmission began each year, with resistant parasites becoming more common as drug use increased. This pattern was seen for both pfcrt-76T (OR per week, 1.09; P=.001) and pfmdr1-86Y (OR per week, 1.07; P=.001) and could not be explained by seasonal changes in the clonal complexity of infections. CONCLUSIONS: The fitness cost of CQ resistance works against the persistence of resistant parasites through the dry season
Lack of inhibition of the anti-malarial action of sulfadoxine-pyrimethamine by folic acid supplementation when used for intermittent preventive treatment in Gambian primigravidae.
Folic acid is frequently given to pregnant women at the same time as intermittent preventive treatment (IPTp) with sulfadoxine/pyrimethamine (SP), but it is not known if it interferes with the anti-malarial activity of SP. To investigate this concern, 1,035 Gambian primigravidae were randomized to receive either folic acid (500-1,500 microg/day) together with oral iron (522) or oral iron alone (513) for 14 days at the same time as they received IPTp with SP. On presentation, 261 women (25%) had Plasmodium falciparum asexual parasitemia. Prevalences of parasitemia on day 14 after treatment were similar in both groups: 5.7% (26 of 458) in the iron plus folic acid group and 4.9% (22 of 446) in the iron alone group (risk difference = 0.74%, 95% confidence interval [CI] = -2.2% to 3.7%). Parasitologic cure was observed in 116 (91%) of 128 of women who were parasitemic on presentation and who received iron and folic acid and in 122 (92%) of 133 women who received iron alone (difference = 1.1%, 95% CI = -5.6% to 8.0%). Women who received folic acid and iron had a slightly higher mean hemoglobin concentration at day 14 than women who had received iron alone (difference = 0.14 g/dL, 95% CI = 0.01-0.27 g/dL). The results of this study suggest that in an area of low SP resistance, administration of folic acid to pregnant women in a dose of 500-1,500 mug/day will not interfere with the protective effect of SP when used for IPTp
Reduction of Malaria Transmission to <italic>Anopheles</italic> Mosquitoes with a Six-Dose Regimen of Co-Artemether
Background Resistance of malaria parasites to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs. Methods and Findings In a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91), or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet]) (n = 406). Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes. Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001). Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001) and were less infectious to mosquitoes at day 7 (p < 0.001) than carriers who had received CQ/SP. Conclusions Co-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.</p
Crude Parasitological Failure after Treatment with CQ/SP or Co-Artemether
<p>Point-prevalence of trophozoite-positive thick films in both treatment groups at 7, 14, and 28 d post-treatment (limit of detection: five trophozoites per μl of peripheral blood). Error bars represent 95% CI calculated from the binomial distribution. Denominators for CQ/SP and co-artemether (CoArt) groups are, respectively, 74 and 336 (day 7), 79 and 356 (day 14), and 72 and 355 (day 28).</p
Effects of genetic variation at the CYP2C19/CYP2C9 locus on pharmacokinetics of chlorcycloguanil in adult Gambians.
AIMS: Antimalarial biguanides are metabolized by CYP2C19, thus genetic variation at the CYP2C locus might affect pharmacokinetics and so treatment outcome for malaria. MATERIALS & METHODS: Polymorphisms in CYP2C19 and CYP2C9 in 43 adult Gambians treated with chlorproguanil/dapsone for uncomplicated malaria were assessed. Chlorcycloguanil pharmacokinetics were measured and associations with CYP2C19 and CYP2C9 alleles and CYP2C19 metabolizer groups investigated. RESULTS: All CYP2C19/CYP2C9 alleles obeyed Hardy-Weinberg equilibrium. There were 15 CYP2C19/2C9 haplotypes with a common haplotype frequency of 0.23. Participants with the CYP2C19*17 allele had higher chlorcycloguanil area under the concentration versus curve at 24 h (AUC(0-24)) than those without (geometric means: 317 vs 216 ng.h/ml; ratio of geometric means: 1.46; 95% CI: 1.03 to 2.09; p = 0.0363) and higher C(max) (geometric mean ratio: 1.52; 95% CI: 1.13 to 2.05; p = 0.0071). CONCLUSION: CYP2C19*17 determines antimalarial biguanide metabolic profile at the CYP2C19/CYP2C9 locus