460 research outputs found

    Comment on: "Estimating the Hartree-Fock limit from finite basis set calculations" [Jensen F (2005) Theor Chem Acc 113:267]

    Full text link
    We demonstrate that a minor modification of the extrapolation proposed by Jensen [(2005): Theor Chem Acc 113:267] yields very reliable estimates of the Hartree-Fock limit in conjunction with correlation consistent basis sets. Specifically, a two-point extrapolation of the form EHF,L=EHF,+A(L+1)exp(9L)E_{HF,L}=E_{HF,\infty}+A(L+1)\exp(-9\sqrt{L}) yields HF limits EHF,E_{HF,\infty} with an RMS error of 0.1 millihartree using aug-cc-pVQZ and aug-cc-pV5Z basis sets, and of 0.01 millihartree using aug-cc-pV5Z and aug-cc-pV6Z basis sets.Comment: Theoretical Chemistry Accounts, in pres

    Developments in CLARA accelerator design and simulations

    Get PDF
    We present recent developments in the accelerator design of CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. Updates on the electron beam simulations and code comparisons including wakefields are described. Simulations of the effects of geometric wakefields in the small-aperture FEL undulator are shown, as well as further simulations on potential FEL experiments using chirped beams. We also present the results of simulations on post-FEL diagnostics

    FEL research and development at STFC Daresbury laboratory

    Get PDF
    In this paper we present an overview of current and proposed FEL developments at STFC Daresbury Laboratory in the UK. We discuss progress on the ALICE IR-FEL since first lasing in October 2010, covering the optimisation of the FEL performance, progress on the demonstration of a single shot cross correlation experiment and the results obtained so far with a Scanning Near-Field Optical Microscopy beamline. We discuss a proposal for a 250 MeV single pass FEL test facility named CLARA to be built at Daresbury and dedicated to research for future light source applications. Finally we present a brief overview of other recent research highlights

    Does Al4H14— cluster anion exist? High-level ab initio study

    Get PDF
    A comprehensive ab initio investigation using coupled cluster theory with the aug-cc-pVnZ, n = D,T basis sets is carried out to identify distinct structures of the Al4H14— cluster anion and to evaluate its fragmentation stability. Both thermodynamic and mechanistic aspects of the fragmentation reactions are studied. The observation of this so far the most hydrogenated aluminum tetramer was reported in the recent mass spectrometry study of Li et al. (2010) J Chem Phys 132:241103–241104. The four Al4H14— anion structures found are chain-like with the multiple-coordinate Al center and can be viewed approximately as comprising Al2H7— and Al2H7 moieties. Locating computationally some of the Al4H14— minima on the correlated ab initio potential energy surfaces required the triple-zeta quality basis set to describe adequately the Al multi-coordinate bonding. For the two most stable Al4H14— isomers, the mechanism of their low-barrier interconversion is described. The dissociation of Al4H14— into the Al2H7— and Al2H7 units is predicted to require 20-22 (10-13) kcal mol-1 in terms of ΔH (ΔG) estimated at T = 298.15 K and p = 1 atm. However, Al4H14— is found to be a metastable species in the gas phase: the H2 loss from the radical moiety of its most favorable isomer is exothermic by 18 kcal mol-1 in terms of ΔH (298.15 K) and by 25 kcal mol-1 in terms of ΔG(298.15 K), with the enthalpic/free energy barrier involved being less than 1 kcal mol-1. By contrast with alane Al4H14—, only a weakly bound complex between Ga4H12— and H2 has been identified for the gallium analogue using the relativistic effective core potential

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    A computational study of the heterogeneous synthesis of hydrazine on Co3Mo3N

    Get PDF
    Periodic and molecular density functional theory calculations have been applied to elucidate the associative mechanism for hydrazine and ammonia synthesis in the gas phase and hydrazine formation on Co3Mo3N. We find that there are two activation barriers for the associative gas phase mechanism with barriers of 730 and 658 kJ/mol, corresponding to a hydrogenation step from N2 to NNH2 and H2NNH2 to H3NNH3, respectively. The second step of the mechanism is barrierless and an important intermediate, NNH2, can also readily form on Co3Mo3N surfaces via the Eley–Rideal chemisorption of H2 on a pre-adsorbed N2 at nitrogen vacancies. Based on this intermediate a new heterogeneous mechanism for hydrazine synthesis is studied. The highest relative barrier for this heterogeneous catalysed process is 213 kJ/mol for Co3Mo3N containing nitrogen vacancies, clearly pointing towards a low-energy process for the synthesis of hydrazine via a heterogeneous catalysis route
    corecore