22 research outputs found

    Remineralization of initial carious lesions in deciduous enamel after application of dentifrices of different fluoride concentrations

    Full text link
    The aim of the present study was to evaluate the remineralization potential of five dentifrices with different fluoride concentrations. Initial caries lesions were created in 72 cylindrical enamel blocks from deciduous teeth. The specimens were randomly distributed among six experimental groups corresponding to six experimental periods. Each of the six volunteers carried two deciduous enamel specimens fixed in an intraoral appliance for a period of 4 weeks. They brushed their teeth and the enamel blocks at least two times a day with dentifrices containing 0 ppm (period 1), 250 ppm (period 2), and 500 ppm fluoride (period 3), respectively. A second group of volunteers (n = 6) used dentifrices with a fluoride content of 0 ppm (period 4), 1,000 ppm (period 5), or 1,500 ppm (period 6). At the end of the respective period, the mineral content was determined by transversal microradiography (TMR). The use of dentifrices containing 500 ppm fluoride (38% MR), 1,000 ppm fluoride (42% MR), and 1,500 ppm fluoride (42% MR) resulted in a statistically significant higher mineral recovery compared to the control group (0 ppm fluoride). Mineral recovery was similar after use of dentifrices containing 0 and 250 ppm fluoride (24%; 25%). It is concluded that it is possible to remineralize initial carious lesions in deciduous enamel in a similar way as it has been described for enamel of permanent teeth

    Effect of exercise on fluoride metabolism in adult humans: a pilot study

    Get PDF
    An understanding of all aspects of fluoride metabolism is critical to identify its biological effects and avoid fluoride toxicity in humans. Fluoride metabolism and subsequently its body retention may be affected by physiological responses to acute exercise. This pilot study investigated the effect of exercise on plasma fluoride concentration, urinary fluoride excretion and fluoride renal clearance following no exercise and three exercise intensity conditions in nine healthy adults after taking a 1-mg Fluoride tablet. After no, light, moderate and vigorous exercise, respectively, the mean (SD) baseline-adjusted i) plasma fluoride concentration was 9.6(6.3), 11.4(6.3), 15.6(7.7) and 14.9(10.0) ng/ml; ii) rate of urinary fluoride excretion over 0–8 h was 46(15), 44(22), 34(17) and 36(17) μg/h; and iii) rate of fluoride renal clearance was 26.5(9.0), 27.2(30.4), 13.1(20.4) and 18.3(34.9) ml/min. The observed trend of a rise in plasma fluoride concentration and decline in rate of fluoride renal clearance with increasing exercise intensity needs to be investigated in a larger trial. This study, which provides the first data on the effect of exercise with different intensities on fluoride metabolism in humans, informs sample size planning for any subsequent definitive trial, by providing a robust estimate of the variability of the effect

    Fluoride concentrations in the pineal gland, brain and bone of goosander (Mergus merganser) and its prey in Odra River estuary in Poland

    Get PDF

    Bone Response to Fluoride Exposure Is Influenced by Genetics

    Get PDF
    Genetic factors influence the effects of fluoride (F) on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone quality. In vivo bone formation and histomorphometry after F intake were also evaluated and related to the proteome. Resistant 129P3/J and susceptible A/J mice were assigned to three groups given low-F food and water containing 0, 10 or 50 ppmF for 8 weeks. Plasma was evaluated for alkaline phosphatase activity. Femurs, tibiae and lumbar vertebrae were evaluated using micro-CT analysis and mineral apposition rate (MAR) was measured in cortical bone. For quantitative proteomic analysis, bone proteins were extracted and analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free semi-quantitative differential expression analysis. Alterations in several bone proteins were found among the F treatment groups within each mouse strain and between the strains for each F treatment group (ratio ≥1.5 or ≤0.5; p<0.05). Although F treatment had no significant effects on BMD or bone histomorphometry in either strain, MAR was higher in the 50 ppmF 129P3/J mice than in the 50 ppmF A/J mice treated with 50 ppmF showing that F increased bone formation in a strain-specific manner. Also, F exposure was associated with dose-specific and strain-specific alterations in expression of proteins involved in osteogenesis and osteoclastogenesis. In conclusion, our findings confirm a genetic influence in bone response to F exposure and point to several proteins that may act as targets for the differential F responses in this tissue
    corecore