17 research outputs found

    Temporal, spatial, and structural patterns of adult trembling aspen and white spruce mortality in Quebec's boreal forest

    Get PDF
    Temporal, spatial, and structural patterns of adult trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss) mortality were studied in intact 150-year-old stands in the southwestern boreal forest of Quebec. For both species, mortality decreases (number of dead trees/total number of trees) with distance from the lake edge until 100-150 m, from which point it slightly increases. Strong peaks in mortality were found for 40- to 60-year-old aspen mainly between 1974 and 1992. Such mortality in relatively young aspen is likely related to competition for light from the dominant canopy trees. Also, the recruitment of this young aspen cohort is presumably the result of a stand breakup that occurred when the initial aspen-dominated stand was between 90 and 110 years old. For spruce, strong peaks in mortality were found in 110- to 150-year-old trees and they occurred mainly after 1980. No clear explanation could be found for these peaks, but we suggest that they may be related to senescence or weakening of the trees following the last spruce budworm outbreak. Suppressed and codominant aspen had a much higher mortality ratio than spruce in the same height class, while more surprisingly, no difference in mortality rate was found between dominant trees of the two species. Most spruce trees were found as standing dead, which leads us to reject the hypothesis that windthrow is an important cause of mortality for spruce in our forests

    Thermal crop water stress index base line temperatures for sugarbeet in arid western U.S.

    Get PDF
    Sugarbeet is a deep-rooted crop in unrestricted soil profiles that can readily utilize stored soil water to reduce seasonal irrigation requirements. Utilization of soil water below 0.6 m is not commonly considered for irrigation scheduling due to the labor and expense of soil water monitoring at deeper depths and uncertainty in effective rooting depth and soil water holding capacity. Thermal-based crop water stress index (CWSI) irrigation scheduling for sugarbeet has the potential to overcome soil water monitoring limitations and facilitate utilization of stored soil water. The traditional canopy temperature based CWSI for monitoring plant water status has not been widely used for irrigated crops partly because of the need to know well-watered and non-transpiring canopy temperatures under identical environmental conditions. In this study, canopy temperature of irrigated sugarbeet under full irrigation (FIT) and 25%FIT in 2014, 2015, 2017 and 2018 in southcentral Idaho and FIT and 60%FIT in 2018 in northwestern Wyoming USA was monitored from full cover through harvest along with meteorological conditions and soil water content. Data driven models, multiple linear regression (MLR) and neural network (NN), were used to predict well-watered canopy temperature based on 15-min average values for solar radiation, air temperature, relative humidity, and wind speed collected within 2 hours of solar noon (13:00 – 16:00 MDT). The NN model had significantly less (p 0.6 m) soil water monitoring
    corecore