782 research outputs found

    Zones of information in the AVIRIS spectra

    Get PDF
    To make the best use of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data an investigator needs to know the ratio of signal to random variability or noise (S/N ratio). The signal is land-cover dependent and decreases with both wavelength and atmospheric absorption and random noise comprises sensor noise and intra-pixel variability. The three existing methods for estimating the S/N ratio are inadequate as typical laboratory methods inflate, while dark current and image methods deflate the S/N ratio. We propose a new procedure called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intra-pixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season

    Estimating the signal-to-noise ratio of AVIRIS data

    Get PDF
    To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors

    Seasonal LAI in slash pine estimated with LANDSAT TM

    Get PDF
    The leaf area index (LAI, total area of leaves per unit area of ground) of most forest canopies varies throughout the year, yet for logistical reasons it is difficult to estimate anything more detailed than a seasonal maximum LAI. To determine if remotely sensed data can be used to estimate LAI seasonally, field measurements of LAI were compared to normalized difference vegetation index (NDVI) values derived using LANDSAT Thematic Mapper (TM) data, for 16 fertilized and control slash pine plots on 3 dates. Linear relationships existed between NDVI and LAI with R(sup 2) values of 0.35, 0.75, and 0.86 for February 1988, September 1988, and March, 1989, respectively. This is the first reported study in which NDVI is related to forest LAI recorded during the month of sensor overpass. Predictive relationships based on data from eight of the plots were used to estimate the LAI of the other eight plots with a root-mean-square error of 0.74 LAI, which is 15.6 percent of the mean LAI. This demonstrates the potential use of LANDSAT TM data for studying seasonal dynamics in forest canopies

    Numerical analysis concepts for balloon analysis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77240/1/AIAA-1994-511-453.pd

    Approaches to Improving School Attendance: Insights From Australian Principals

    Get PDF
    School absenteeism has been concerning educators in the Global North (including Australia) as research suggests a relationship between school attendance, academic achievement and subsequent life chances. This paper focuses on the perspectives of 50 school leaders in Queensland, Australia about approaches to improving attendance. Strategies reflected the cultural, economic and social diversity of their school communities. In general, quality curricula and pedagogies were considered important, but were not explicitly linked to attendance. This suggests the need for schools to develop strategies to enhance student engagement in meaningful learning through quality curricula and pedagogies within a positive school environment

    Acoustic vibration model for a composite shell with sound absorption material

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76741/1/AIAA-1996-1348-145.pd

    The Upper Crustal Evolution of a Large Silicic Magma Body: Evidence from Crystal-scale Rb-Sr Isotopic Heterogeneities in the Fish Canyon Magmatic System, Colorado

    Get PDF
    Batholith-sized bodies of crystal-rich magmatic ‘mush' are widely inferred to represent the hidden sources of many large-volume high-silica rhyolite eruptive units. Occasionally these mush bodies are ejected along with their trapped interstitial liquid, forming the distinctive crystal-rich ignimbrites known as ‘monotonous intermediates'. These ignimbrites are notable for their combination of high crystal contents (35-55%), dacitic bulk compositions with interstitial high-silica rhyolitic glass, and general lack of compositional zonation. The 5000 km3 Fish Canyon Tuff is an archetypal eruption deposit of this type, and is the largest known silicic eruption on Earth. Ejecta from the Fish Canyon magmatic system are notable for the limited compositional variation that they define on the basis of whole-rock chemistry, whereas ∌ 45 vol. % crystals in a matrix of high-silica rhyolite glass together span a large range of mineral-scale isotopic variability (microns to millimetres). Rb/Sr isotopic analyses of single crystals (sanidine, plagioclase, biotite, hornblende, apatite, titanite) and sampling by micromilling of selected zones within glass plus sanidine and plagioclase crystals document widespread isotopic disequilibrium at many scales. High and variable 87Sr/86Sri values for euhedral biotite grains cannot be explained by any model involving closed-system radiogenic ingrowth, and they are difficult to rationalize unless much of this radiogenic Sr has been introduced at a late stage via assimilation of local Proterozoic crust. Hornblende is the only phase that approaches isotopic equilibrium with the surrounding melt, but the melt (glass) was isotopically heterogeneous at the millimetre scale, and was therefore apparently contaminated with radiogenic Sr shortly prior to eruption. The other mineral phases (plagioclase, sanidine, titanite, and apatite) have significantly lower 87Sr/86Sri values than whole-rock values (as much as −0·0005). Such isotopic disequilibrium implies that feldspars, titanite and apatite are antecrysts that crystallized from less radiogenic melt compositions at earlier stages of magma evolution, whereas highly radiogenic biotite xenocrysts and the development of isotopic heterogeneity in matrix melt glass appear to coincide with the final stage of the evolution of the Fish Canyon magma body in the upper crust. Integrated petrographic and geochemical evidence is consistent with pre-eruptive thermal rejuvenation of a near-solidus mineral assemblage from ∌720 to 760°C (i.e. partial dissolution of feldspars + quartz while hornblende + titanite + biotite were crystallizing). Assimilation and blending of phenocrysts, antecrysts and xenocrysts reflects chamber-wide, low Reynolds number convection that occurred within the last ∌10 000 years before eruptio
    • 

    corecore