9,203 research outputs found

    Physics in Ultra-strong Magnetic Fields

    Get PDF
    In magnetic fields stronger than B_Q = 4.4 X 10^13 Gauss, an electron's Landau excitation energy exceeds its rest energy. I review the physics of this strange regime and some of its implications for the crusts and magneto- spheres of neutron stars. In particular, I describe how ultra-strong fields >> render the vacuum birefringent and capable of distorting and magnifying images ("magnetic lensing"); >> change the self-energy of electrons: as B increases they are first slightly lighter than mem_e, then slightly heavier; >> cause photons to rapidly split and merge with each other; >> distort atoms into long, thin cylinders and molecules into strong, polymer-like chains; >> enhance the pair density in thermal pair-photon gases; >> strongly suppress photon-electron scattering, and >> drive the vacuum itself unstable, at extremely large B. In a concluding section, I discuss recent observations of the spindown histories of soft gamma repeaters and anomalous X-ray pulsars. The magnetar model gives a promising framework for understanding these data.Comment: Review talk given at Fifth Huntsville Gamma-Ray Burst Symposium. 12 pages with 5 eps figure

    Multi-channel active noise cancellation using the DSP56001 (digital signal processor)

    Get PDF
    The authors report on the performance of a portable active noise cancellation (ANC) system based around a PC hosted 20-MHz Motorola DSP56001 processor with a four-channel analog input/output (I/O) board connected to the real world via standard consumer audio components. The system will perform active noise cancellation over the frequency range of 65-500 Hz. Quantitative results are presented for the cancellation of single tone noise and of narrowband noise, and a measure of the ANC power spectrum is calculated for various parameters of the filtered-X LMS algorithm in different acoustic environments. Qualitative results based on human hearing perception of the attenuation of various narrowband and real world noise sources are also discussed

    James Henry Faulkner (1861-1936)

    Get PDF

    Gross plastic deformation of axisymmetric pressure vessel heads

    Get PDF
    The gross plastic deformation and associated plastic loads of four axisymmetric torispherical pressure vessels are determined by two criteria of plastic collapse: the ASME twice elastic slope (TES) criterion and the recently proposed plastic work curvature (PWC) criterion. Finite element analysis was performed assuming small and large deformation theory and elastic–perfectly plastic and bilinear kinematic hardening material models. Two plastic collapse modes are identified: bending-dominated plastic collapse of the knuckle region in small deformation models and membrane-dominated plastic collapse of the cylinder or domed end in large deformation models. In both circumstances, the PWC criterion indicates that a plastic hinge bending mechanism leads to gross plastic deformation and is used as a parameter to identify the respective plastic loads. The results of the analyses also show that the PWC criterion leads to higher design loads for strain hardening structures than the TES criterion, as it takes account of the effect of strain hardening on the evolution of the gross plastic deformation mechanism

    Design by analysis of ductile failure and buckling in torispherical pressure vessel heads

    Get PDF
    Thin shell torispherical pressure vessel heads are known to exhibit complex elastic-plastic deformation and buckling behaviour under static pressure. In pressure vessel Design by Analysis, the designer is required to assess both of these behaviour modes when specifying the allowable static load. The EN and ASME boiler and pressure vessel codes permit the use of inelastic analysis in design by analysis, known as the direct route in the EN Code. In this paper, plastic collapse or gross plastic deformation loads are evaluated for two sample torispherical heads by 2D and 3D FEA based on an elastic-perfectly plastic material model. Small and large deformation effects are considered in the 2D analyses and the effect of geometry and load perturbation are considered in the 3D analysis. The plastic load is determined by applying the ASME twice elastic slope criterion of plastic collapse and an alternative plastic criterion, the Plastic Work Curvature criterion. The formation of the gross plastic deformation mechanism in the models is considered in relation to the elastic-plastic buckling response of the vessels. It is concluded that in both cases, design is limited by formation of an axisymmetric gross plastic deformation in the knuckle of the vessels prior to formation of non-axisymmetric buckling modes

    Drug interactions with lipid membranes: the effects of drug and lipid structure upon rates of ester hydrolysis

    No full text
    The transport of compounds around the body has been a topic of interest for many years, and the advent of non-invasive biological imaging in living tissue has made huge advances in the characterisation and localisation of cellular receptors for use in drug targeting. However, there remains a significant paucity of knowledge regarding how the majority of drug molecules are transported about the body, when they often exhibit negligible aqueous solubility and the body expresses no trans-membrane pumps or chaperone proteins that recognise them and facilitate their movement. This leads to large attrition rates in drug discovery programmes, as compounds with high binding constants or inhibitive activity in vitro fail to perform in vivo, due to poor bioavailability or non-specific sequestration away from the tissue of interest. In this study, the interactions between a number of drug and lipid molecules were investigated and the effects upon both the lipids’ chemical and bulk membrane structures were analysed. This revealed some of the mechanistic causes of the previously observed hydrolytic activity a number of common drug compounds exhibit toward lipid membranes and identified parameters affecting the observed rates of reaction. The findings also suggest approaches by which this behaviour might be predicted, or even tuned to deliver optimum pharmacological characteristics

    Trends, Disruption, and our Knowledge-Based Economy

    Get PDF

    The Age, Metallicity and Alpha-Element Abundance of Galactic Globular Clusters from Single Stellar Population Models

    Full text link
    Establishing the reliability with which stellar population parameters can be measured is vital to extragalactic astronomy. Galactic GCs provide an excellent medium in which to test the consistency of Single Stellar Population (SSP) models as they should be our best analogue to a homogeneous (single) stellar population. Here we present age, metallicity and α\alpha-element abundance measurements for 48 Galactic globular clusters (GCs) as determined from integrated spectra using Lick indices and SSP models from Thomas, Maraston & Korn, Lee & Worthey and Vazdekis et al. By comparing our new measurements to independent determinations we are able to assess the ability of these SSPs to derive consistent results -- a key requirement before application to heterogeneous stellar populations like galaxies. We find that metallicity determinations are extremely robust, showing good agreement for all models examined here, including a range of enhancement methods. Ages and α\alpha-element abundances are accurate for a subset of our models, with the caveat that the range of these parameters in Galactic GCs is limited. We are able to show that the application of published Lick index response functions to models with fixed abundance ratios allows us to measure reasonable α\alpha-element abundances from a variety of models. We also examine the age-metallicity and [α\alpha/Fe]-metallicity relations predicted by SSP models, and characterise the possible effects of varied model horizontal branch morphology on our overall results.Comment: 22 pages, 19 figures, accepted for publication in MNRA
    • 

    corecore