2,936 research outputs found

    Biomolecular Composition of Sea Ice Microalgae and Its Influence on Marine Biogeochemical Cycling and Carbon Transfer through Polar Marine Food Webs

    Full text link
    Microalgae growing on the underside of sea ice are key primary producers in polar marine environments. Their nutritional status, determined by their macromolecular composition, contributes to the region’s biochemistry and the unique temporal and spatial characteristics of their growth makes them essential for sustaining polar marine food webs. Here, we review the plasticity and taxonomic diversity of sea ice microalgae macromolecular composition, with a focus on how different environmental conditions influence macromolecular production and partitioning within cells and communities. The advantages and disadvantages of methodologies for assessing macromolecular composition are presented, including techniques that provide high throughput, whole macromolecu-lar profile and/or species-specific resolution, which are particularly recommended for future studies. The directions of environmentally driven macromolecular changes are discussed, alongside antici-pated consequences on nutrients supplied to the polar marine ecosystem. Given that polar regions are facing accelerated rates of environmental change, it is argued that a climate change signature will become evident in the biochemical composition of sea ice microalgal communities, highlighting the need for further research to understand the synergistic effects of multiple environmental stressors. The importance of sea ice microalgae as primary producers in polar marine ecosystems means that ongoing research into climate-change driven macromolecular phenotyping is critical to understanding the implications for the regions biochemical cycling and carbon transfer

    Effects of motion on high frame rate contrast enhanced echocardiography and its correction

    Get PDF
    Contrast echocardiography (CE) ultrasound with microbubble contrast agents have significantly advanced our capability in assessing cardiac function, including myocardium perfusion imaging and quantification. However in conventional CE techniques with line by line scanning, the frame rate is limited to tens of frames per second and image quality is low. Recent research works in high frame-rate (HFR) ultrasound have shown significant improvement of the frame rate in non-contrast cardiac imaging. But with a higher frame rate, the coherent compounding of HFR CE images shows some artifacts due to the motion of the microbubbles. In this work we demonstrate the impact of this motion on compounded HFR CE in simulation and then apply a motion correction algorithm on in-vivo data acquired from the left ventricle (LV) chamber of a sheep. It shows that even if with the fast flow found inside the LV, the contrast is improved at least 100%

    Alkali Doping Leads to Charge-Transfer Salt Formation in a Two-Dimensional Metal–Organic Framework

    Get PDF
    Efficient charge transfer across metal–organic interfaces is a key physical process in modern organic electronics devices, and characterization of the energy level alignment at the interface is crucial to enable a rational device design. We show that the insertion of alkali atoms can significantly change the structure and electronic properties of a metal–organic interface. Coadsorption of tetracyanoquinodimethane (TCNQ) and potassium on a Ag(111) surface leads to the formation of a two-dimensional charge transfer salt, with properties quite different from those of the two-dimensional Ag adatom TCNQ metal–organic framework formed in the absence of K doping. We establish a highly accurate structural model by combination of quantitative X-ray standing wave measurements, scanning tunnelling microscopy, and density-functional theory (DFT) calculations. Full agreement between the experimental data and the computational prediction of the structure is only achieved by inclusion of a charge-transfer-scaled dispersion correction in the DFT, which correctly accounts for the effects of strong charge transfer on the atomic polarizability of potassium. The commensurate surface layer formed by TCNQ and K is dominated by strong charge transfer and ionic bonding and is accompanied by a structural and electronic decoupling from the underlying metal substrate. The consequence is a significant change in energy level alignment and work function compared to TCNQ on Ag(111). Possible implications of charge-transfer salt formation at metal–organic interfaces for organic thin-film devices are discussed

    Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target

    Get PDF
    Secondary visual loss occurs in millions of patients due to a wound-healing response, known as posterior capsule opacification (PCO), following cataract surgery. An intraocular lens (IOL) is implanted into residual lens tissue, known as the capsular bag, following cataract removal. Standard IOLs allow the anterior and posterior capsules to become physically connected. This places pressure on the IOL and improves contact with the underlying posterior capsule. New open bag IOL designs separate the anterior capsule and posterior capsules and further reduce PCO incidence. It is hypothesised that this results from reduced cytokine availability due to greater irrigation of the bag. We therefore explored the role of growth factor restriction on PCO using human lens cell and tissue culture models. We demonstrate that cytokine dilution, by increasing medium volume, significantly reduced cell coverage in both closed and open capsular bag models. This coincided with reduced cell density and myofibroblast formation. A screen of 27 cytokines identified nine candidates whose expression profile correlated with growth. In particular, VEGF was found to regulate cell survival, growth and myofibroblast formation. VEGF provides a therapeutic target to further manage PCO development and will yield best results when used in conjunction with open bag IOL designs

    In Vivo Measurement of Cerebral Mitochondrial Metabolism Using Broadband Near Infrared Spectroscopy Following Neonatal Stroke

    Get PDF
    Neonatal stroke presents with features of encephalopathy and can result in significant morbidity and mortality. We investigated the cerebral metabolic and haemodynamic changes following neonatal stroke in a term infant at 24 h of life. Changes in oxidation state of cytochrome-c-oxidase (oxCCO) concentration were monitored along with changes in oxy- and deoxy- haemoglobin using a new broadband near-infrared spectroscopy (NIRS) system. Repeated transient changes in cerebral haemodynamics and metabolism were noted over a 3-h study period with decrease in oxyhaemoglobin (HbO2), deoxy haemoglobin (HHb) and oxCCO in both cerebral hemispheres without significant changes in systemic observations. A clear asymmetry was noted in the degree of change between the two cerebral hemispheres. Changes in cerebral oxygenation (measured as HbDiff=HbO2-HHb) and cerebral metabolism (measured as oxCCO) were highly coupled on the injured side of the brain

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    The simulation of action disorganisation in complex activities of daily living

    Get PDF
    Action selection in everyday goal-directed tasks of moderate complexity is known to be subject to breakdown following extensive frontal brain injury. A model of action selection in such tasks is presented and used to explore three hypotheses concerning the origins of action disorganisation: that it is a consequence of reduced top-down excitation within a hierarchical action schema network coupled with increased bottom-up triggering of schemas from environmental sources, that it is a more general disturbance of schema activation modelled by excessive noise in the schema network, and that it results from a general disturbance of the triggering of schemas by object representations. Results suggest that the action disorganisation syndrome is best accounted for by a general disturbance to schema activation, while altering the balance between top-down and bottom-up activation provides an account of a related disorder - utilisation behaviour. It is further suggested that ideational apraxia (which may result from lesions to left temporoparietal areas and which has similar behavioural consequences to action disorganisation syndrome on tasks of moderate complexity) is a consequence of a generalised disturbance of the triggering of schemas by object representations. Several predictions regarding differences between action disorganisation syndrome and ideational apraxia that follow from this interpretation are detailed

    Atrial fibrillation cryoablation is an effective day case treatment: the UK PolarX vs. Arctic Front Advance experience

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. AIMS: Pulmonary vein isolation (PVI) is the cornerstone of catheter ablation for atrial fibrillation (AF). There are limited data on the PolarX Cryoballoon. The study aimed to establish the safety, efficacy, and feasibility of same day discharge for Cryoballoon PVI. METHODS AND RESULTS: Multi-centre study across 12 centres. Procedural metrics, safety profile, and procedural efficacy of the PolarX Cryoballoon with the Arctic Front Advance (AFA) Cryoballoon were compared in a cohort large enough to provide definitive comparative data. A total of 1688 patients underwent PVI with cryoablation (50% PolarX and 50% AFA). Successful PVI was achieved with 1677 (99.3%) patients with 97.2% (n = 1641) performed as day case procedures with a complication rate of <1%. Safety, procedural metrics, and efficacy of the PolarX Cryoballoon were comparable with the AFA cohort. The PolarX Cryoballoon demonstrated a nadir temperature of -54.6 \ub1 7.6\ub0C, temperature at 30 s of -38.6 \ub1 7.2\ub0C, time to -40\ub0C of 34.1 \ub1 13.7 s, and time to isolation of 49.8 \ub1 33.2 s. Independent predictors for achieving PVI included time to reach -40\ub0C [odds ratio (OR) 1.34; P < 0.001] and nadir temperature (OR 1.24; P < 0.001) with an optimal cut-off of ≤34 s [area under the curve (AUC) 0.73; P < 0.001] and nadir temperature of ≤-54.0\ub0C (AUC 0.71; P < 0.001), respectively. CONCLUSIONS: This large-scale UK multi-centre study has shown that Cryoballoon PVI is a safe, effective day case procedure. PVI using the PolarX Cryoballoon was similarly safe and effective as the AFA Cryoballoon. The cryoablation metrics achieved with the PolarX Cryoballoon were different to that reported with the AFA Cryoballoon. Modified cryoablation targets are required when utilizing the PolarX Cryoballoon
    • …
    corecore