12,274 research outputs found

    Demographic and psychological variables affecting test subject evaluations of ride quality

    Get PDF
    Ride-quality experiments similar in objectives, design, and procedure were conducted, one using the U.S. Air Force Total In-Flight Simulator and the other using the Langley Passenger Ride Quality Apparatus to provide the motion environments. Large samples (80 or more per experiment) of test subjects were recruited from the Tidewater Virginia area and asked to rate the comfort (on a 7-point scale) of random aircraft motion typical of that encountered during STOL flights. Test subject characteristics of age, sex, and previous flying history (number of previous airplane flights) were studied in a two by three by three factorial design. Correlations were computed between one dependent measure, the subject's mean comfort rating, and various demographic characteristics, attitudinal variables, and the scores on Spielberger's State-Trait Anxiety Inventory. An effect of sex was found in one of the studies. Males made higher (more uncomfortable) ratings of the ride than females. Age and number of previous flights were not significantly related to comfort ratings. No significant interactions between the variables of age, sex, or previous number of flights were observed

    Aspects of the biology of the herring gull (larus atgentatus pont.)

    Get PDF
    A study of the herring gull Larus argentatus emphasising interrelationships of population ecology, social behaviour and breeding biology was undertaken on the Isle of May, Scotland, with some comparative work in a moorland gull colony on Mallowdale Fell in the Pennines. A cull of the herring gull population, which had hitherto been increasing at 13% per annum, has been practised by the Nature Conservancy Council on the Isle of May yearly since 1972, and special attention was given in this study to the biological effects of culling. The population trends were followed in detail up to 1977, and it was shown that the annual, recruitment rate has been very variable since 1972 and there has been a shortfall in the number of young gulls predicted to join the breeding population. These have presumably moved and some ringed gulls were located breeding in other colonies. The population has been held at about 20-25% of its 1972 level since 1975. With many of the older gulls having been culled, the average age of the population had been reduced, so that by 1977 about 50% of the population was breeding for the first time. Despite a strong correlation between parental age and percentage breeding success, the average number of chicks fledged per pair in control areas was 0.82, which was as high as that recorded in a previous study by Parsons (1971, unpublished Ph.D. thesis, Durham University) on the Isle of May in the late 1960s. In addition, it was found that the median date of laying was the same as that estimated by Parsons, and that egg size (positively correlated with chick survival) had increased significantly. Experiments on recruitment by manipulating breeding density showed that at the highest densities recorded the annual recruitment rate was close to the average annual mortality rate. In areas where density had been greatly reduced, the recruitment rate was insufficient to replace annual adult mortality, and in some areas no recruitment was recorded. There was a broad, optimal breeding density of between 2 and 10 nests/l00m(^2) where highest recruitment rates took place. Much of the Isle of May was found to be at this density as a result of culling. Birds which spread their nests most uniformly were the most successful breeders, and the majority of nests were thus spaced. Aggression was found to increase with density. The rationale of gull culling has been discussed for the Isle of May, together with recommendations for future culls on the island and elsewhere

    The Populations of Comet-Like Bodies in the Solar system

    Full text link
    A new classification scheme is introduced for comet-like bodies in the Solar system. It covers the traditional comets as well as the Centaurs and Edgeworth-Kuiper belt objects. At low inclinations, close encounters with planets often result in near-constant perihelion or aphelion distances, or in perihelion-aphelion interchanges, so the minor bodies can be labelled according to the planets predominantly controlling them at perihelion and aphelion. For example, a JN object has a perihelion under the control of Jupiter and aphelion under the control of Neptune, and so on. This provides 20 dynamically distinct categories of outer Solar system objects in the Jovian and trans-Jovian regions. The Tisserand parameter with respect to the planet controlling perihelion is also often roughly constant under orbital evolution. So, each category can be further sub-divided according to the Tisserand parameter. The dynamical evolution of comets, however, is dominated not by the planets nearest at perihelion or aphelion, but by the more massive Jupiter. The comets are separated into four categories -- Encke-type, short-period, intermediate and long-period -- according to aphelion distance. The Tisserand parameter categories now roughly correspond to the well-known Jupiter-family comets, transition-types and Halley-types. In this way, the nomenclature for the Centaurs and Edgeworth-Kuiper belt objects is based on, and consistent with, that for comets.Comment: MNRAS, in press, 11 pages, 6 figures (1 available as postscript, 5 as gif). Higher resolution figures available at http://www-thphys.physics.ox.ac.uk/users/WynEvans/preprints.pd

    A Highly Ordered Faraday-Rotation Structure in the Interstellar Medium

    Get PDF
    We describe a Faraday-rotation structure in the Interstellar Medium detected through polarimetric imaging at 1420 MHz from the Canadian Galactic Plane Survey (CGPS). The structure, at l=91.8, b=-2.5, has an extent of ~2 degree, within which polarization angle varies smoothly over a range of ~100 degree. Polarized intensity also varies smoothly, showing a central peak within an outer shell. This region is in sharp contrast to its surroundings, where low-level chaotic polarization structure occurs on arcminute scales. The Faraday-rotation structure has no counterpart in radio total intensity, and is unrelated to known objects along the line of sight, which include a Lynds Bright Nebula, LBN 416, and the star cluster M39 (NGC7092). It is interpreted as a smooth enhancement of electron density. The absence of a counterpart, either in optical emission or in total intensity, establishes a lower limit to its distance. An upper limit is determined by the strong beam depolarization in this direction. At a probable distance of 350 +/- 50 pc, the size of the object is 10 pc, the enhancement of electron density is 1.7 cm-3, and the mass of ionized gas is 23 M_sun. It has a very smooth internal magnetic field of strength 3 microG, slightly enhanced above the ambient field. G91.8-2.5 is the second such object to be discovered in the CGPS, and it seems likely that such structures are common in the Magneto-Ionic Medium.Comment: 16 pages, 5 figures, ApJ accepte

    Chiral Loops and Ghost States in the Quenched Scalar Propagator

    Get PDF
    The scalar, isovector meson propagator is analyzed in quenched QCD, using the MQA pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect associated with the anomalous structure of the η′\eta ' propagator in quenched QCD. Both the time dependence and the quark mass dependence of this effect are well-described by a chiral loop diagram corresponding to an η′−π\eta '- \pi intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.Comment: 29 pages, 10 figures, Late

    Energy in Agriculture: Energy for Greenhouses Part 1: Energy Conservation

    Get PDF
    The increased cost and scarcity of all fuels have affected the greenhouse owner as badly as any segment of industry. For some, crops have been damaged or lost. For others, it has reduced the margin of profit. Growers, manufacturers, suppliers, horticulturists, engineers and many others have studied the situation thoroughly in order to come up with viable solutions and alternatives for conserving fuel

    Radio and gamma-ray constraints on dark matter annihilation in the Galactic center

    Full text link
    We determine upper limits on the dark matter (DM) self-annihilation cross section for scenarios in which annihilation leads to the production of electron--positron pairs. In the Galactic centre (GC), relativistic electrons and positrons produce a radio flux via synchroton emission, and a gamma ray flux via bremsstrahlung and inverse Compton scattering. On the basis of archival, interferometric and single-dish radio data, we have determined the radio spectrum of an elliptical region around the Galactic centre of extent 3 degrees semi-major axis (along the Galactic plane) and 1 degree semi-minor axis and a second, rectangular region, also centered on the GC, of extent 1.6 degrees x 0.6 degrees. The radio spectra of both regions are non-thermal over the range of frequencies for which we have data: 74 MHz -- 10 GHz. We also consider gamma-ray data covering the same region from the EGRET instrument (about GeV) and from HESS (around TeV). We show how the combination of these data can be used to place robust constraints on DM annihilation scenarios, in a way which is relatively insensitive to assumptions about the magnetic field amplitude in this region. Our results are approximately an order of magnitude more constraining than existing Galactic centre radio and gamma ray limits. For a DM mass of m_\chi =10 GeV, and an NFW profile, we find that the velocity-averaged cross-section must be less than a few times 10^-25 cm^3 s^-1.Comment: 14 pages, 9 figures. Version accepted for publication in PRD. Reference section updated/extended

    Quenched Approximation Artifacts: A study in 2-dimensional QED

    Full text link
    The spectral properties of the Wilson-Dirac operator in 2-dimensional QED responsible for the appearance of exceptional configurations in quenched simulations are studied in detail. The mass singularity structure of the quenched functional integral is shown to be extremely compicated, with multiple branch points and cuts. The connection of lattice topological charge and exactly real eigenmodes is explored using cooling techniques. The lattice volume and spacing dependence of these modes is studied, as is the effect of clover improvement of the action. A recently proposed modified quenched approximation is applied to the study of meson correlators, and the results compared with both naive quenched and full dynamical calculations of the same quantity.Comment: 34 pages (Latex) plus 9 embedded figures; title change

    Mobile spin impurity in an optical lattice

    Get PDF
    We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour is not expected, and the physics is that of a magnon or impurity. While the charge degrees of freedom of the system are frozen, the resulting tight-binding Hamiltonian for the impurity's spin exhibits an intriguing structure that strongly depends on the filling factor of the lattice potential. This filling dependency also transfers to the nature of the interactions for the case of two magnons and the important spin balanced case. At low filling, and up until near unit filling, the single impurity Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the filling is increased and the second band of the single particle spectrum of the periodic potential is progressively filled, the impurity Hamiltonian, at low energies, describes a single particle trapped in a multi-well potential. Interestingly, once the first two bands are fully filled, the impurity Hamiltonian is a near-perfect realisation of the Su-Schrieffer-Heeger model. Our studies, which go well beyond the single-band approximation, that is, the Hubbard model, pave the way for the realisation of interacting one-dimensional models of condensed matter physics.Comment: 13 pages, 12 figures, accepted in New Journal of Physic
    • …
    corecore