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Abstract

We investigate the Fermi polaron problem in a spin-1,/2 Fermi gas in an optical lattice for the limit of
both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour
is not expected, and the physics is that of a magnon or impurity. While the charge degrees of freedom
of the system are frozen, the resulting tight-binding Hamiltonian for the impurity’s spin exhibits an
intriguing structure that strongly depends on the filling factor of the lattice potential. This filling
dependency also transfers to the nature of the interactions for the case of two magnons and the
important spin balanced case. At low filling, and up until near unit filling, the single impurity
Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the
filling is increased and the second band of the single particle spectrum of the periodic potential is
progressively filled, the impurity Hamiltonian, at low energies, describes a single particle trapped in a
multi-well potential. Interestingly, once the first two bands are fully filled, the impurity Hamiltonian is
anear-perfect realisation of the Su—Schrieffer—-Heeger model. Our studies, which go well beyond the
single-band approximation, that is, the Hubbard model, pave the way for the realisation of interacting
one-dimensional models of condensed matter physics.

1. Introduction

Recently, strongly-interacting trapped one-dimensional multicomponent systems, which suffer from huge
ground state degeneracies, have been shown to be tractable by means of freezing the charge degrees of freedom
and the reduction of the spin sector to an effective spin chain model [ 1-3]. With this development, there has
been considerable theoretical work on strongly interacting one-dimensional systems in recent years [4—16],
including for the case of a single spin impurity [17-19]. As a result in the last year, numerical methods have been
developed to obtain the effective spin chain from an arbitrary confining potential [20, 21]. At the same time,
ultracold atom experimental techniques have been developed to reach the few-body limit in one-dimensional
set-ups [22, 23]. There have been several experimental realisations of the few-body limit with fermions [24-26],
including for strong interactions [27], and bosons [28].

The traditional notion of a polaron corresponds to a quasiparticle formed from the interactions between an
impurity and its many-body surrounding medium, as first discussed by Landau and Pekar in 1948 [29]. Polaron
physics plays, for instance, an important role in the theory of superconductors with strong interactions, where
the carriers are small lattice polarons and bipolarons [30, 31]. There is also strong evidence that polarons play a
role in the mechanism for some high-temperature superconductors [31-33]. In magnetic systems, a spin
polaron can be formed by the interaction of an impurity spin with the spins of the surrounding magnetic
ions[33].

It is well known that the definition of a quasiparticle becomes ill-defined in one dimension [34—36]. The low-
lying states for a single impurity fermion in one dimension in the homogeneous situation were derived by
McGuire [37, 38]. The impurity problem in one dimension can also be considered in terms of a single, or two,
particle-hole expansion, which gives a good approximation with fast convergence to the Bethe ansatz results
[39—41], and from which for attractive interactions a binding energy and effective mass of the impurity can be

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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calculated [42]. The dressing of a single impurity fermion in one dimension by a majority Fermi sea has been
considered experimentally [26], providing a confirmation of the particle-hole expansion. This hints towards a
polaronic-like behaviour for weak attractive interactions [35, 36], which has been studied theoretically, using the
Fermi—Hubbard model, for the case of an imbalanced Fermi gas in an optical lattice [39]. Evidence of polaronic
behaviour of an impurity in a one-dimensional optical lattice has also been observed in the dynamics of a mobile
spin impurity within the single-band Bose—Hubbard model [43].

Polaron and impurity physics are also of great relevance in ultracold atomic physics. In this field, the polaron
problem consists of a single impurity atom immersed in a many-body system of identical particles. The simplest
problem of this kind corresponds to a fully polarised Fermi gas at very low temperature interacting with an
atomic fermion of the same mass in a different hyperfine state. This is called the Fermi polaron problem [44, 45]
and has received considerable attention for almost a decade now [36, 39, 46—51]. In this time the Fermi polaron
has been observed and investigated in several ultracold atom set-ups of different nature [52-55]. In addition,
there have been experimental and theoretical works on the dynamics of an impurity [56, 57], including a spin
impurity in a one-dimensional lattice in the Hubbard model [43, 58].

Inspired by the capability of cold atom experiments, we consider the realisable scenario of a single spin
impurity in a one-dimensional strongly repulsive Fermi gas in an optical lattice potential. This is the strongly
repulsive one-dimensional limit of the Fermi polaron problem and goes beyond the single-band approximation
of the Hubbard model. While the motivation for this work lies in the rich topic of polaronic physics, a polaronic-
like behaviour is not expected in this limit. Throughout this work, we will refer to the state as that of a magnon or
impurity.

In section 2, we explicitly introduce the model we consider, including a brief discussion of the strongly
interacting limit and the effective spin chain Hamiltonian of this limit. With the system defined we move on to
discuss the dependence of the effective spin chain coefficients on the filling of the lattice in section 3. We will
then consider the single impurity scenario in section 4. In the final section, section 5, we extend the discussion to
multiple magnons, with an emphasis on the nature of the interactions between them.

2. System

We consider Nidentical spin-1/2 fermions of mass m in a one-dimensional periodic potential V' (x;) with
contact even-wave interactions of strength ¢. The Hamiltonian is then given by

2
H= Z[zp—m + V(xi)] + 8> b(xi — xj). (1)

i<j

The system is placed in a finite box of length L with open boundary conditions. Throughout this paper, we set
/2 = m = 1, and express length in units of the length L of the system. We consider the limit of strong repulsive
interactions, § — 00, for which the system can be mapped onto an effective spin chain model [1-3]. To make
sure that the number of lattice wells is commensurate with the box’s length, and without loss of generality, we
choose a periodic potential of the form

27x

Vix) = Vlcos(T), 2)

where d s the lattice spacing, defined as d = L/L, with L, giving the number of wells—or ‘sites’—in the lattice.
We consider a moderate lattice strength for all calculations of Vi = 5. The filling factor v of the lattice is defined
as the number of particles per well of the optical lattice, i.e. v = N /L,. This will be the main parameter of the
system.

In the strongly interacting limit, ¢ — 00, and atlow energy, the charge degrees of freedom are fully
described by N spin-polarised non-interacting fermions. In this limit, to linear order in 1 /g, the dynamics of the
spin degrees of freedom are described by an effective spin chain Hamiltonian [1-3], illustrated in figure 1. At
1/g = 0, theenergy Ey = lim,_,, E(g) of the highly-degenerate ground state manifold is given by the spin-
polarised fermionic, non-interacting ground state energy of Hamiltonian (1). To order 1/g, the energies in the
ground state manifold are given by [1, 4]

E,=Ey— —, 3
for n = 1,...,Nyeg, where Nyeg is the number of degenerate states in the manifoldat 1/¢ = 0, and where K,, (>0)

is related to Tan’s contact [59-67], and is the nth eigenvalue of the effective spin chain Hamiltonian for the
system
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Figure 1. Illustration of the mapping of the system to a spin chain with coupling constants J;when g — oo.
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Above, 0; = (07, a]y- , 0 is the vector of spin-1/2 Pauli matrices operating at site jand J; is the coupling
coefficient between thejand j + 1spins. Throughout this work, we will refer to K, as ‘energies’. As a result, the
state with the highest K,, corresponds to the ground state of the physical system for g > 0.

The coupling constants J; depend exclusively on the trap’s shape, strength and particle number [1-3, 10, 20].
Importantly, this is independent of the details of the spin degree of freedom. For atoms in optical lattices, the
single particle solutions of the non-interacting system are Bloch waves, with L; states in each band. To calculate
the spin chain coefficients we use the open source code CONAN [20], which numerically calculates the
coefficients for an arbitrary potential and up to N & 35 particles. From here on we set N = 30 unless otherwise
stated, and scale through the filling of the lattice by varying the number of lattice wells L..

3. Regimes of the system

As stated above, the coefficients of the spin chain in the strongly-interacting limit are exclusively dependent on
the single particle problem. Hence, the spin chain coefficients are solely dependent on the filling of the optical
lattice. We consider the range of fillings 1/2 < v < 2. Before calculating the coefficients of the spin chain using
CONAN we can discuss their expected form, based on the fact that they are calculated from the Nlowest energy
single particle states of the non-interacting part of Hamiltonian (1). Over the range of filling considered the
single particle spectrum goes from having a single band to two bands. For any v, the number of states in the first
band can bewrittenas N — (v — 1)(N — L;)and thesecond band (v — 1)(N — L), with § denoting the
Heaviside function.

In the next section, we will discuss the various regimes in the context of a single impurity or magnon. The
system we consider has three distinct regimes:

1. v < 1; low filling case with particles occupying a single band. As a result, the spin chain coefficients will be
homogeneous, with deviations only due to finite size effects.

2.1 < v < 2; high filling region with a two-band model of an unequal number of states in each band. In this
regime, the spin chain coefficients are dominated by the N — L, states in the second band, which have a
significant ‘box-like’ component to the wavefunctions due to their high energy. This contribution from the
box solutions defines the form of the coefficients, and, as we will discuss below, will result in the coefficients
initially taking the form of a single (and multiple) inverted ‘well’ potential.

3.v = 2; double filling is a special point, with two bands fully occupied. When mapped to the spin chain
picture this filling results in a staggering of the spin chain coefficients between two values. This is analogous
to the Su-Schriefer—Heeger (SSH) model [68, 69] of polyacetylene, and we compare the single magnon case
to the SSH model in the next section.

As previously discussed, the spin chain coefficients depend exclusively on the single particle problem. In
addition, the contribution of each single particle state is dependent, in part, on its energy (see [20] and references
therein). As a result, for the v > 1 case, the largest contributions to the coefficients come from the states in the
second band. For afillingof v = 1 + p/L;,with p < Lyand p € Z, p states are occupied in the second band.
The p states of the second band are largely influenced by the hard wall boundary, due to their large energy and the
moderate strength of the optical lattice, as can be seen in figure 2. For a filling corresponding to p = 1, the single
state in the second band, see figure 2(a), heavily dominates the form of the spin chain coefficients, which take the
form of an inverted well, see figure 3(b). For p = 2 the coefficients have an inverted double well form, due to the
highest energy state which is shown in figure 2(b). However, the well height for this filling is small, on the scale of

3
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Figure 2. Highest energy single particle eigenfunctions of the non-interacting part of Hamiltonian (1) for (a) L;=29 and (b) L, = 28
(N=30).
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Figure 3. Spin chain coefficients calculated by CONAN for N = 30 in the three distinct regimes of the system, circles (black) denote the
values calculated and lines (red) are only included to help visualisation. The coefficients for each regime have been normalised to their

maximum. (a) ¥ < 1case (v = 1/2 spin chain coefficients shown), (b), (c) ¥ > 1case (b) p=1and (c) p=2and (d) the v = 2 special
point.

~6 x 10~* max(J;), which is effectively homogeneous, recovering the first regime, as seen in figure 3(c). The
multiple well regime of the spin chain lasts, on a meaningful scale, until p ~ N /4, after which there isan
extended crossover region to the third regime of staggered coefficients. The transition from the ‘well-like’
structures to the special point of v = 2, while distinct, is extended over the region of filling approaching v = 2,
forall N.

As discussed above, in the regime of > 1 the form of the spin chain coefficients is a result of the hard-wall
boundaries of the system. In figure 3(c) we observe that the inverted ‘well-like’ regime crosses over to an
effectively homogeneous form quickly. This is entirely a result of the system size being rather large in one
dimension, with finite-size effects only being substantial in the special case of a single atom over unit filling.
Reducing the atom number will allow for multiple wells in the coefficients to be observed on alarger scale, e.g.
for N =20 as shown in figure 4 (this case is considered in more detail in appendix B). When we move on to
discuss multiple magnons in section 5, the extended regime of multiple inverted ‘wells’ for N ~ 20 will be
important.

At this point, it is worth noting that the choice of lattice strength will affect the numerical values obtained
throughout this work. However, the validity of the three regimes, which are the main focus of this paper, is away
from the extreme limits of the potential strength, i.e. for a moderate lattice strength. In the limit of a strong
lattice strength, the v < 1homogeneous regime will still be present, however, the v > 1regime will change in
nature as the excited states of the single particle spectrum will no longer be largely influenced by the hard wall
boundary. The presence of the v = 2 special point does not depend on the lattice strength. In the weak lattice
strength limit, the spin chain coefficients tend towards being homogeneous for all , as is the case for no
potential.
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Figure 4. Same as for figure 3, except for N = 20.

4. Single impurity

We consider a single spin-down fermion—the impurity—interacting with N — 1 spin-up fermions. In the
strongly-interacting limit, the spin of the impurity, in the spin chain, represents a single magnon. We have a basis
of Npossible states e.g., for N = 4, we have the basis

LTI 1L 1T 11t

For convenience, we will denote each state as | j), with j giving the position in the spin chain of the spin-down
fermion, allowing the wavefunction to be written as |[¥) = V(DI 7).

There is a simple mapping of the single spin-down fermion spin chain Hamiltonian to a single particle tight-
binding model with analogous hopping and potential. We can write the analogous single particle Hamiltonian as

S

N

R At S n

RV = > [ti(b; by + by, by + Usb; b, ®
=1

where t; gives the the analogous hopping coefficient, U; the analogous on-site potential and I;; = |j) {vac|

(b} = (Z;j' )') are single particle creation (annihilation) operators, with |vac) the normalised vacuum state. The
relations from the analogous parameters to the spin chain coefficients are

U= J-1+] 7)

further details of the mapping are given in appendix A. Note, jis an index of the spin chain sites—the original
fermions—and has nothing to do with the wells (or sites) of the lattice potential, with j = 1, 2,...,N.

4.1. Low filling regime

For v < 1, the spin chain has a set of homogeneous coefficients, observed in figure 3(a). For the magnon/single
particle analogy the hopping and on-site potential are constant for j = 1, N,i.e.t; = t,U; = U, with

t~ —2U,and t, U > 0.Atsites j = 1, N the on-site potential hasa value of U, y = U /2 due to the hard-wall
boundaries. The effect of this inhomogeneity in Hamiltonian (5) is, remarkably, to make the magnon behave
more as if the spin chain had periodic boundary conditions in the highest energy state of the system (lowest K,,),
as we will show below.

We solve the stationary Schrédinger equation for Hamiltonian (5) with the potential and hopping as
specified above (for a detailed derivation see appendix C). We find the nth eigenfunction in the spectrum to be of
the form
1 N o
0) = —= D" (e + e kD)), ®)
2N 5

2
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Figure 5. Comparison of exact diagonalization of CONAN coefficients shown by circles (black) and the analytical model,

equations (11) and (12), given by a solid line (red) in the spectrum and squares (red) for the probability densities for v = 1,/2, N=30.
(a) The energy spectrum, ordered so that the groundstate of the system (the highest K, state) corresponds to the index zero, (b)
groundstate (N — 1 — n = 0) probability density, (c) first excited state (N — 1 — n = 1) probability density.

where the quasi-momenta k,, are quantised as

™
kn = W, n = 0, 1,...,N — 1. (9)

The spectrum is given by
K, = U — 2t cos(ky,). (10)

Notice, in our case, the quasi-momentum k = 0 is allowed, resulting in the lowest K, state having a truly
homogeneous density in the chain. Similar forms of the spectrum and quasi-momenta are found by solving the
strongly-interacting one-dimensional Fermi gas with hard wall boundaries by Bethe ansatz [70].

Fortherange 1/2 < v < 1, we calculate the spin chain coefficients for each L, using the open source code
CONAN. Using these coefficients we then solve the stationary Schrodinger equation for Hamiltonian (4) by
exact diagonalization and compare the eigenfunctions and spectrum to equations (8) and (10) respectively. We
find perfect agreement between the numerical and analytical results for v < 1, as shown for v = 1/2 in figure 5.
However, as the filling approaches v = 1 we, of course, observe small deviations due to finite size effects.

4.2. High filling regime

Aswe increase the filling beyond v = 1, the physics of the single spin-down fermion change qualitativelyina
dramatic way. As discussed in section 3, this is the result of the N lowest energy single particle states filling the
lowest band and partially occupying the second band for v > 1. The form of the spin chain coefficients was
discussed in section 3 and is shown in figures 3(b) and (c). The spin chain coefficients for 1 < v < 2 take the
form of p inverted finite wells, with the well height being small in some cases. As a result, both the analogous
tight-binding model hopping and on-site potential acquire an oscillatory, inhomogeneous behaviour consisting
of p wells. Using the mappings of equations (6) and (7), the potential takes the form of an inverted finite well, and
the hopping a finite well of smaller magnitude.

We develop an approximate theory for the case of p = 1, which can be extended to multiple wells, assuming
no coupling between each well. We expand the Hamiltonian parameters around the centre of the well and
account for the hopping via an effective mass that is dependent on the hopping strength. Reference [71]
considers a similar derivation for the case of a 1D Bose—~Hubbard model. For a full derivation see appendix D.
Following these approximations, we obtain the eigenstates to be of the form [71]

- N U | gz N+1
o) = Z:ZM NG lHS(A\/;Z)e 2 (=Df) 2+ 2 >] (11)

with U and 7 being characterising variables for the potential and hopping strengths respectively, N the
normalisation constant, H; the sth Hermite polynomial, z = j — (N + 1)/2and s = 0, 1,...,(N — 1). The
characterising parameters of ¢/ and 7 are defined in appendix D. The solutions are that of the harmonic
oscillator with a m-phase term. The approximation to the energy spectrum is given by [71]

6
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Figure 6. Comparison of exact diagonalization of CONAN coefficients shown by circles (black) and the analytical model,
equations (11)and (12), given by a solid line (red) for v = 1 + 1/N = 1.033, N = 30. (a) The energy spectrum, (b) groundstate
(s=0) eigenfunction, (c) first excited state (s = 1) eigenfunction.

Figure 7. Illustration of the mapping of the system to a spin chain when g — oo atdouble filling (v = 2) with coupling constants J;
and J,.

K, ~ Ey — 2+ TU(S + %), (12)

with E.g being a constant offset to the energy that is calculated during the reduction of the hopping in the
effective mass approximation.

In figure 6, we compare the analytical eigenfunctions and eigenvalues (equations (11) and (12) respectively)
to the numerical exact diagonalization of the spin chain Hamiltonian with the coefficients calculated by
CONAN for Ly =29, N = 30. There is an excellent agreement at low energies (high Kj). As expected, due to the
finite depth of the well, we recover plane wave solutions like that for v < 1 for high energies.

4.3.Double filling

Atv = 2 every well of the optical lattice is doubly occupied, and there are N /2 states occupied in each of the first
two bands of the single particle spectrum. This results in a distortion of the spin chain similar to that of the
Peierls transition [72], see figure 7. From this, it would be expected that the spin chain coefficients are staggered
between two values of intra- and inter-well couplings, as illustrated in figure 7, with the coefficients form given in
figures 3(d) and 4(d). The spin chain coefficients between particles in a single well of the optical lattice are
naturally larger than that between particles in separate wells. The staggering in the spin chain coefficients is a
result of two atoms sitting in single wells of the optical lattice potential, which will occur for any lattice length as
long as there is double filling.

For this special point, the single particle tight-binding model on-site potential for j = 1, N is essentially
constant and the hopping is staggered between two values. This form of the single particle Hamiltonian is similar
to that of the SSH model for polyacetylene [68, 69]. The SSH model has a unit cell comprising of two sites (A and
B), and its Hamiltonian has the form [73, 74]

R N/2 U N/2-1 P
Hgsp = Y (t + 60)[by ,bg, + hcl + > (t — 60)[by,1bg, + hcl, (13)

u=1 u=1
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where Z;j; 8,y and I;A(B),V acton the A(B) sub-lattice site of the unit cell u. With hopping coefficients of (+ + ¢)
within each unit cell and (¢ — 6t) between adjacent unit cells. To compare to the numerics we find the average ¢
and 6t across the whole spin chain. This model has two bands, which we label & . The values obtained for tand
6t are dependent on the lattice strength. To increase the ratio 6t /t, an increase in the lattice strength is required.
This can be motivated by the diagram of figure 7, where it can be visualised that increasing the lattice strength
would in effect decrease the coupling between atoms in different lattice wells, giving a corresponding increase in
the ratio 6t/t.

By observing the spin chain coefficeint data in figures 3(d) and 4(d), we can treat the single particle on-site
potential as a constant with a strength of 2, that is, we assume that the physics is dominated by the staggered
tunnelling over the inhomogeneity of the potential at the edges. The analogous single particle Hamiltonian at
v = 2isthen of the approximate form,

N/2
I%(l) = Z Zt(gj’uéq’u + Bg’uég’u) — HSSH- (14)
u=1

In appendix E we solve Hamiltonian (14) for the eigenstates and spectrum. Quoting the results of this
derivation, the eigenstates are given by

N
[0) = N[0 — 6 (e 1), 13

=1

where A is a normalisation factor, and ¢ is the Bloch function of the SSH Hamiltonian (13),

dp(x) = (:l:eilm(k) )’ (16)

where the + refers to the two bands of the model. The Bloch functions are periodic, ¢, (x + 2) = ¢, (x),and the
phase # in equation (16) is given by

k (k) = arctan (% tan (k) ) (17)
The allowed quasi-momenta are obtained from the open boundary conditions and are given by
1 N
k= nt — k), n=1,2,...,—. 18
N1 [ ) 5 (18)
The quasi-energy for Hamiltonian (14) is
K, = 2t T 2.J1? cos?(k) + 62 sin?(k). (19)

In figure 8, we compare the analytical eigenfunctions and spectrum (equations (15) and (19) respectively) to
the results from solving the stationary Schrédinger equation for Hamiltonian (4) by exact diagonalization using
the spin chain coefficients calculated by CONAN for v = 2. We find excellent agreement for the spectrum of the
model. For all but the groundstate, we observe good agreement between the analytical and numerical
eigenfunctions, see figures 8(c)—(e). For the groundstate of the system, the highest K,, state, we observe a
substantial discrepancy between the analytical eigenfunctions and the exact diagonalization due to finite size
effects, seen in figure 8(b). The finite size of the system results in a small well-like perturbation to the intra-well
coupling (¢t + 6t) of order 10~ max(J;)z*, again z = j — (N + 1) /2. This perturbation can be seen in the form
of the spin chain coefficients shown in figure 3(d), with the decrease of order 0.05 max(J;) in the centre of the
chain for the larger of the staggered coefficients. Unsurprisingly, this deviation results in the significant
modification of the low energy, high K,, states, most specifically to the groundstate.

5. Magnon—magnon interactions in multi-impurity systems

5.1. Two magnons

We now move on to discuss the effects of interaction between magnons within the spin chain. We calculate the
ground state energy for two spin-down fermions, which we denote K¢, by exact diagonalization across the three
regimes previously discussed and quantify the interactions between the impurities by the magnon—-magnon
energy shift,

Kine = K§ — KV, (20)

with K\ being the non-interacting ground state for two hard-core bosons (free magnons), i.e. the sum of the
ground and first excited single magnon energies.

8
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Figure 8. Comparison of exact diagonalization of CONAN coefficients shown by circles (black) and the analytical model,
equations (15) and (19), given by a solid line (red) for » = 2, N=30. (a) The energy spectrum in the reduced zone scheme, (b)—(f)
eigenfunctions for the (b) groundstate of system (highest K,), (c) first excited state, (e) fifth excited state, (f) sixth excited state.
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Figure 9. Magnon—magnon energy shift, equation (20), for two spin-down fermions on a log-scale for N = 16 circles (black), N = 20
diamonds (red), and N = 24 squares (blue outline). (a) As a function of filling ~and (b) a function of the number of particles over unit
filling p.

To support the discussion we will refer to the calculated eigenfunctions for the two magnons. We write the
magnon-magnon wavefunction in the basis of states | j,, ,), with j;denoting the position of the ith spin, i.e.

¥ = Z w(jl’j2)|j1’j2>' 2D
Jr<i
In plotting the eigenfunctions, we plot the coefficients 1 (ji, j,), with a mirror image across the line j, = j,.

In figure 9(a), we show K, as a function of the filling v for N = 16, 20, 24, with vscaled through by varying
the number oflattice sites L;. To see the behaviour of the interactions clearly we also plot, in figure 9(b), Ki,c asa
function of the number of particles off of unit filling p,i.e. v = N/(N — p). The magnon—magnon interaction
shift is found to be attractive in all cases.

We observe a clear transition at v = 1(p = 0). This is to be expected from our investigation of the single
impurity system. This is a transition from a homogeneous dilute regime, to a regime with a localising ‘well-like’
potential. We observe an increase in the interaction for the single well case, p = 1, as the two magnons are
localised in close proximity of each other. This is clear in the eigenfunction figure 10(a), with the state heavily
localised to a region where the two magnons are close together. For p = 2 there is a substantial decrease in the
interaction energy shift, due to the two magnons being spatially separated by the double well form of the spin
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Figure 10. Eigenfunctions for the case of two impurities (magnon—-magnon) 1 (ji, j,), which is the coefficient to the basis state | j;, j,).
All plots are for N= 20 and afillingof (a) v = 1.053 (p=1),(b) ¥ = 1.176 (p=3),(c) ¥ = 1.818 (p=9)and (d) v = 2 (p = 10).
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Figure 11. (a) Energy shift due to interactions on a log-scale with N = 16 circles (black), N = 20 diamonds (red), and N = 24 squares
(blue outline) for the spin balanced case N| = Ny = N /2. (b) Kin¢(N/2) /(N /4 Kipni(2)), the ratio of the balanced interaction
strength to the two spin-down fermion case for the same N considered in (a).

chain coefficients. This is observed for the case of p = 3 in the eigenfunction of figure 10(b), with the state heavily
localised to a region where the two magnons are well separated. As p is increased the approximation of multiple
wells with no coupling between them breaks down, resulting in an increase in the interaction strength as
observed with the magnons delocalised across the system as seen in figure 10(c).

We observe a pronounced decrease of the interaction strength for all Nat double filling, v = 2. As already
discussed in section 4.3, at this point, excluding finite size effects, we have an effective SSH model for the system.
This results in a reduced interaction of the two magnons. This can be seen in the eigenfunctions, with a shift in
the distribution of the coefficients towards the magnons being further apart. That is, considering the lower
triangle half of figures 10(c) and (d), there is a small shift in the coefficients of the basis towards values of the
magnons being further apart, i.e. towards the point of (j;, j,) = (20, 0), resulting in the decrease in interaction
strength.

5.2. Spin balanced case

Using the density-matrix-renormalisation-group, we obtain the ground state energies, K{, for the case of
balanced spins N| = N; = N /2 in the spin chain. We again calculate Kiy, given by equation (20), which is now
an N /2 magnon energy shift. The non-interacting groundstate K{ is in this case the sum of the first N /2 single
magnons energies, i.e. the highest N /2 states in K.

In figure 11(a) we observe a collapse of the transition observed for two magnons for all N. The collapse is due
to the fixed proportion of magnons in the system as the system size is altered. The transition is now, in the
fermionic language for magnons, a standard metal-insulator—-metal transition. The discontinuity of the energy
shift at the transition has a magnitude of AKy,, /L; = 5.
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For v < 1, the interaction energy shifts of the N /2 magnons are well described by the two-magnon energy
shifts, as can be seen by the approximately constant ratio of the balanced spin and two magnon case for fixed N,
Kint(N/2) /(N /4 K (2))in figure 11(b). This means that for v < 1 the interaction is a result of mainly two-
body processes. As the filling approaches unity the nature of the interactions goes through a transition, due to the
behaviour of the two magnons system discussed in the previous section. Overall for » > 1 the nature of the
interactions is not well described by only two-body processes, due to the formation of ‘well-like’ structure in the
Hamiltonian as discussed previously.

6. Conclusions

In this work, we have considered the limit of both strong repulsive interactions and one dimension of the Fermi
polaron problem in an optical lattice. In this limit polaronic-behaviour is not expected, instead, we find three
distinct regimes for the impurity, or magnon, over a reasonable range of fillings. For low filling, v < 1the
magnon reproduces a single particle tight-binding model. With high filling, v > 1, we observe alocalisation of
the low energy (high K,,) single magnon eigenfunctions, due to a ‘well-like’ form to the Hamiltonian, which isa
direct result of the occupation of the second band of the lattice and the moderate strength of the optical lattice.
The eigenfunctions at low energy in this regime reproduce the harmonic well eigenfunctions with a 7-phase
term. The final regime occurs at the point of double filling, v = 2, where the spin chain coefficients are of a
staggered form. The Hamiltonian, when written as an analogous tight binding model, takes the form of the well-
known SSH model. For all but the lowest state of the spectrum, the single magnon eigenfunctions reproduce that
of the SSH model. However, at low energies the eigenfunctions have adverse finite size effects that result in
discrepancies, most significantly to the groundstate of the system (highest K, state).

In the final section of this work, we consider the nature of the interactions of multiple spin-down fermions
by considering two magnons and the important spin balanced case. We observe a rich transition reflecting the
three regimes present. There is a clear metal-insulator—metal transition as the filling is increased, which
corresponds to the three regimes present for the single magnon.

In summary, we have shown that a single spin impurity in a spin-1/2 Fermi gas within an optical lattice
potential in the limit of one dimension and strong repulsive interactions can have a rich set of behaviour
dependent on the filling of the lattice. The system is found to replicate the quantum models of homogeneous
systems, finite wells and the SSH model.

Acknowledgments

CWD acknowledges support from EPSRC CM-CDT Grant No. EP/L015110/1. PO and MV acknowledge
support from EPSRC EP/M024636/1. FFB and NTZ acknowledge support by the Danish Council for
Independent Research DFF Natural Sciences and the DFF Sapere Aude program.

Appendix A. Tight-binding model analogy

The spin chain Hamiltonian, equation (4), for a single spin-down fermion can be written as a matrix in the basis
of | j) (j denotes the position of the spin-down fermion). For example with N = 4 we have

L —h 0 0
-h h+h —h 0
0 —hLh L+5k —Bf
0 0 L f

K= (A1)

with J; denoting the spin chain coefficient between the jand j + 1site of the spin chain. Note that due to the
hard-wall boundaries the edge sites of the chain are only coupled to one other site. This results in an
inhomogeneity at the edges of the spin chain which has interesting effects on the system.

We can trivially map the Hamiltonian for a single spin-down fermion to that of a single particle tight-
binding model, as discussed in the main text with the analogous Hamiltonian given in equation (5). Looking at
the example of equation (A1), we simply have a set of diagonal terms denoting an on-site potential, U, and off-
diagonal terms denoting hopping strength between nearest-neighbours, . This results in the mapping between
spin chain coefficient and the tight-binding model given in equations (6) and (7) in the main text.
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Figure 12. Normalised spin chain coefficients, Jj, for N = 20 over the range of fillings v considered.

Appendix B. Form of the effective spin chain

In section 3, we discuss the three regimes of the single-particle system as a function of filling in the optical lattice
potential. These three regimes, when the strong interaction limit is taken, result in stark differences in behaviour
for the spin chain coefficients of Hamiltonian (4). In this appendix we give a brief discussion of the form of the
spin chain coefficients across the full region considered, 1 /2 < v < 2, as computed by the open source code
CONAN [20] for N=20.

As expected we observe three distinct regimes across the range of fillings considered, see figure 12. For v < 1,
there is a homogeneous regime, with finite size effects when approaching v = 1. The transition to the inverted
‘well-like’ forms of 1 < v < 2issharp. As the filling is increased above unity, i.e. v = N/(N — p), foreachp
there can be seen to be p ‘wells’ in the form of the coefficients. Between the second and third regime, there is an
extended transition from about p ~ 5 until the special point of » = 2. Finally, at double filling, v = 2, the
coefficients take on a staggering form between intra- and inter-well couplings between particles.

Appendix C. Low filling derivation

In this regime, we have a clear consistent form to the spin chain coefficients, see figure 3(a). Mapping the
coefficients to the analogous single particle tight-binding Hamiltonian, see equations (6) and (7), thereis a
constant negative hopping of value —t and an on-site potential that is constant for j = 1, N atavalue of
U = 2t,with U, t > 0. Atthesites j = 1, N we have the on-site potential equal to z.

The analogous tight-binding Hamiltonian in this regime is given by

., N aia R N o N PP
K = —ty (b b1+ by bj) + 2t > b bj + t(by by + byby), (C1)
j=1 j=2

with bAj(Z;jT) denoting the annihilation(creation) operator at site j. Excluding the sites j = 1, N, we have a simple
tight-binding Hamiltonian and we would expect plane wave solutions at site j, with j = 1, N, of the form

C; = el + Bje¥, (C2)
where k is the momentum and B a coefficient to be determined. Writing the stationary Schrodinger equation of
Hamiltonian (C1), for j = 1, N in a discretized form we obtain

=2t(Cj11 + Cj-) + tC; = K, C;. (C3)
The spectrum of this homogeneous system is
K, = 2t — 2t cos (k). (C4)
We now derive the exact form of Cj, and the quasi-momentum k. We can solve for B; and C; by considering
j=landj=2 for the discretized Hamiltonian equation (C3). Solving these results in
B, = ek,

C =1+ ek (C5)
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We can similarly find Byand Cyusingj=Nand j = N — 1, giving

BN — elk(ZNJrl)’

Cy = e (1 + ). (Co6)

Setting B; = By, we get the quasi-momenta to be quantised as

k_,eZ C7
Nn (C7)

therefore n = 0, 1,...,N — 1. Finally, from this derivation, we find a form of the general jth coefficient and find
the normalised eigenfunctions to be given by

(W) = ol - emt=D)| )., (C8)

J_Z(e

Appendix D. High filling derivation

For v > 1, the analogous tight-binding Hamiltonian has a finite ‘well-like’ structure to both the potential and
hopping, as discussed in section 4.2. In this appendix, we derive approximate eigenfunctions and spectrum for
the case of one particle over unit filling, v = 1 + 1/L, corresponding to a single well in the tunnelling
coefficients.

To make the derivation simpler, we centre the spin chain sites at the origin, thatis j — j — (N + 1)/2,and
we will label this coordinate as z. For the analogous tight-binding Hamiltonian we can approximate the potential
and hopping as

U, =U° 4 U'cos (1z)

t,=—1t%— t'cos [T(Z + %)], (D1

with 7 = 27/(N — 3) the spatial frequency, and U°, U, £* and t' are positive (>0) constants, with each found
by fitting equations (D1) to the analogous potential and hopping obtained from the mapping of the spin chain
coefficients by equations (6) and (7). Note, that the cosine term in equations (D1) allows for the finite size effect
of decreased spin chain coefficients at the boundaries to be accounted for.

We solve the analogous tight-binding Hamiltonian (equation (5)) for the potential and hopping of
equations (D1). We can define the hopping as positive by considering a phase shift to the full eigenfunction of the
effective form

v, = ’l/)z(_l)z) (D2)
resulting in the single-particle Hamiltonian for 1), being
(1 R/ At At
RV= S [Ub b, + tL(b, by + hec)l, (D3)
z=—(N-1)/2

with t] = —t,.
Expanding to zeroth order around the centre of the system, z= 0, we get a Hamiltonian of the form

N-1)/2 . .
RV S [0+ UNB b + (10 + Y, by + hec)]. (D4)
2= —(N=1)/2

This can be diagonalized by Fourier transform to obtain the eigenvalues and expanding for the low energy
spectra around k = 0 we obtain
AU U+ 2080 + 1) — (0 + tHK2, (D5)
with k, being the momentum of state s. We can separate equation (D5) into two parts, with the first being a
constant offset of
Eoe = U 4 U + 2(t° + 1Y, (D6)
which will be accounted for in the final energy. The second term is related to the energy of a particle with an
effective mass n7*. Equating the last term in equation (D5) to /2%k? /2m* gives an effective mass of
52
m = —-——— (D7)
2(t0 + th
Note, t9, t! > 0, therefore, the effective mass is negative, as would be expected from the form of the on-site
potential.
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We can now write the Hamiltonian as an effective model of only a potential, with the hopping properties
accounted for by the effective mass [71]. Taking the expansion around z = 0 of the potential to first order we
obtain

U~ U+ U - %Ulzz. (D8)

Taking x to be the continuous counterpart of z, we approximate the Hamiltonian to be

2 dpx) 1
—— T+ U RH(x) = —ep(x), D9
TS U = e ) (D9)
where we have defined the mass as negative m’ = —m*,and ¢ = E — E, with E being the eigenvalues of

equation (D9) without the offset. The form of equation (D9) is that of the well known harmonic oscillator, with
an analogous frequency of
, UITZ
=—

(D10)
m

From this we can derive two characteristic quantities of the harmonic well problem to be [71]

w =2 /%UITZ(tO + 1Y = 2JUT, (D11)
, Tyir2
mw — 2 — \/g’ (D12)
V2 t° + tYH T

where we have defined
U= %Usz, (D13)
T=(@1"+1h, (D14)

which are characterising constants for the potential and hopping. Equations (D11) and (D12) agree with that of
[71], where they consider a similar derivation in the case of a 1D Bose-Hubbard Hamiltonian.
We can now write out the approximate eigenfunction, using z, tobe [71]

N 2=t JU ) T2 N+1>
[1) = 02D Z_ZNZHlHS[\/;z)e 2(—1* z+ 5 ] (D15)

and the eigenvalues to be

K, ~ Ey — 2\/(//7(5 + %), (D16)

where s = 0, 1,...,N — 1, H,is the sth Hermite polynomial and N is a normalisation constant. In figure 6 of the
main text equation (D15) and equation (D 16) give the analytical eigenfunctions and energies respectively.

Appendix E. Double filling derivation

As discussed in the main text, for ¥ = 2 we have a similar form for the analogous tight-binding Hamiltonian to
that of the SSH model [68, 69, 73, 74]. In this appendix, we focus on the solutions to the SSH Hamiltonian of
equation (13) in the main text. We can recast the SSH Hamiltonian into the form

N
N ) AF A Af oA
Hssu = Y (t = (=1)60)[b; b1 + by, byl (E1)
=1
We now solve the stationary Schrédinger equation for Hamiltonian (E1). The eigenfunction can be written as
the sum over a set of coefficients at eachssite, [¥) = 3=, 4/(j)| j). Inserting the coefficient form of the
eigenfunction into the stationary Schrodinger equation we obtained a set of equations of the form

(t = (=Y G+ 1D + (¢ = (=D7'0Y (- 1) = ep()), (E2)

where v ( j) will have the form ¥ (j) = ¢(j)el¥, with ¢ ( j) being the Bloch functions of the unit cell. We also
know that the coefficients in the two site unit cell must only differ by a phase factor, therefore, we take an ansatz
for the unit cell coefficients of the form
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6(j) = (ifi“), E3)

with the £ corresponding to the two bands of the model. Inserting the ansatz for the eigenfunction into
equation (E2) and solving for x and the quasi-energy e we get

K = arctan [% tan(k)] (E4)

and

€ = +£2./t? cos?(k) + 612 sin?(k). (E5)

In the limit of 6t — 0, the expected solution of a homogeneous hopping model is recovered.
The full set of eigenfunctions across the lattice can be found, after imposing the boundary conditions, to be
of the form

U= NY (o (e¥ — o (e ¥11j), (E6)
j
where N is the normalisation coefficient. The quasi-momenta are
1
k= ——mnm — k(k)), E7
N 1(n7T (k) (E7)

withn = 1, 2,...,N /2 (two bands). The k correction to the quasi-momenta is small, as 6t is small, and the
allowed values of the quasi-momenta can be easily found numerically. The full energy spectrum for the double
filling Hamiltonian (14) is given by

K, =2t F e. (E8)
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