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Abstract
We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of
both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour
is not expected, and the physics is that of amagnon or impurity.While the charge degrees of freedom
of the system are frozen, the resulting tight-bindingHamiltonian for the impurity’s spin exhibits an
intriguing structure that strongly depends on the filling factor of the lattice potential. Thisfilling
dependency also transfers to the nature of the interactions for the case of twomagnons and the
important spin balanced case. At lowfilling, and up until near unitfilling, the single impurity
Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the
filling is increased and the second band of the single particle spectrumof the periodic potential is
progressively filled, the impurityHamiltonian, at low energies, describes a single particle trapped in a
multi-well potential. Interestingly, once the first two bands are fullyfilled, the impurityHamiltonian is
a near-perfect realisation of the Su–Schrieffer–Heegermodel. Our studies, which gowell beyond the
single-band approximation, that is, theHubbardmodel, pave theway for the realisation of interacting
one-dimensionalmodels of condensedmatter physics.

1. Introduction

Recently, strongly-interacting trapped one-dimensionalmulticomponent systems, which suffer fromhuge
ground state degeneracies, have been shown to be tractable bymeans of freezing the charge degrees of freedom
and the reduction of the spin sector to an effective spin chainmodel [1–3].With this development, there has
been considerable theoretical work on strongly interacting one-dimensional systems in recent years [4–16],
including for the case of a single spin impurity [17–19]. As a result in the last year, numericalmethods have been
developed to obtain the effective spin chain from an arbitrary confining potential [20, 21]. At the same time,
ultracold atom experimental techniques have been developed to reach the few-body limit in one-dimensional
set-ups [22, 23]. There have been several experimental realisations of the few-body limit with fermions [24–26],
including for strong interactions [27], and bosons [28].

The traditional notion of a polaron corresponds to a quasiparticle formed from the interactions between an
impurity and itsmany-body surroundingmedium, as first discussed by Landau and Pekar in 1948 [29]. Polaron
physics plays, for instance, an important role in the theory of superconductors with strong interactions, where
the carriers are small lattice polarons and bipolarons [30, 31]. There is also strong evidence that polarons play a
role in themechanism for some high-temperature superconductors [31–33]. Inmagnetic systems, a spin
polaron can be formed by the interaction of an impurity spinwith the spins of the surroundingmagnetic
ions [33].

It is well known that the definition of a quasiparticle becomes ill-defined in one dimension [34–36]. The low-
lying states for a single impurity fermion in one dimension in the homogeneous situationwere derived by
McGuire [37, 38]. The impurity problem in one dimension can also be considered in terms of a single, or two,
particle-hole expansion, which gives a good approximationwith fast convergence to the Bethe ansatz results
[39–41], and fromwhich for attractive interactions a binding energy and effectivemass of the impurity can be
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calculated [42]. The dressing of a single impurity fermion in one dimension by amajority Fermi sea has been
considered experimentally [26], providing a confirmation of the particle-hole expansion. This hints towards a
polaronic-like behaviour forweak attractive interactions [35, 36], which has been studied theoretically, using the
Fermi–Hubbardmodel, for the case of an imbalanced Fermi gas in an optical lattice [39]. Evidence of polaronic
behaviour of an impurity in a one-dimensional optical lattice has also been observed in the dynamics of amobile
spin impurity within the single-bandBose–Hubbardmodel [43].

Polaron and impurity physics are also of great relevance in ultracold atomic physics. In this field, the polaron
problem consists of a single impurity atom immersed in amany-body systemof identical particles. The simplest
problemof this kind corresponds to a fully polarised Fermi gas at very low temperature interactingwith an
atomic fermion of the samemass in a different hyperfine state. This is called the Fermi polaron problem [44, 45]
and has received considerable attention for almost a decade now [36, 39, 46–51]. In this time the Fermi polaron
has been observed and investigated in several ultracold atom set-ups of different nature [52–55]. In addition,
there have been experimental and theoretical works on the dynamics of an impurity [56, 57], including a spin
impurity in a one-dimensional lattice in theHubbardmodel [43, 58].

Inspired by the capability of cold atom experiments, we consider the realisable scenario of a single spin
impurity in a one-dimensional strongly repulsive Fermi gas in an optical lattice potential. This is the strongly
repulsive one-dimensional limit of the Fermi polaron problem and goes beyond the single-band approximation
of theHubbardmodel.While themotivation for this work lies in the rich topic of polaronic physics, a polaronic-
like behaviour is not expected in this limit. Throughout this work, wewill refer to the state as that of amagnon or
impurity.

In section 2, we explicitly introduce themodel we consider, including a brief discussion of the strongly
interacting limit and the effective spin chainHamiltonian of this limit.With the systemdefinedwemove on to
discuss the dependence of the effective spin chain coefficients on thefilling of the lattice in section 3.Wewill
then consider the single impurity scenario in section 4. In thefinal section, section 5, we extend the discussion to
multiplemagnons, with an emphasis on the nature of the interactions between them.

2. System

WeconsiderN identical spin-1/2 fermions ofmassm in a one-dimensional periodic potentialV xi( )with
contact even-wave interactions of strength g. TheHamiltonian is then given by

H
p

m
V x g x x
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The system is placed in afinite box of length Lwith open boundary conditions. Throughout this paper, we set
m 1 = = , and express length in units of the length L of the system.We consider the limit of strong repulsive

interactions, g  +¥, for which the system can bemapped onto an effective spin chainmodel [1–3]. Tomake
sure that the number of lattice wells is commensurate with the box’s length, andwithout loss of generality, we
choose a periodic potential of the form

V x V
x

d
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2
, 21

p
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⎞
⎠( ) ( )

where d is the lattice spacing, defined as d L Lsº with Ls giving the number of wells—or ‘sites’—in the lattice.
We consider amoderate lattice strength for all calculations ofV 51 = . Thefilling factor ν of the lattice is defined
as the number of particles per well of the optical lattice, i.e. N Lsn º . This will be themain parameter of the
system.

In the strongly interacting limit, g  ¥, and at low energy, the charge degrees of freedom are fully
described byN spin-polarised non-interacting fermions. In this limit, to linear order in g1 , the dynamics of the
spin degrees of freedom are described by an effective spin chainHamiltonian [1–3], illustrated infigure 1. At

g1 0º , the energy E E glimg0 º ¥ ( ) of the highly-degenerate ground statemanifold is given by the spin-
polarised fermionic, non-interacting ground state energy ofHamiltonian (1). To order g1 , the energies in the
ground statemanifold are given by [1, 4]

E E
K

g
, 3n

n
0= - ( )

for n N1, , deg= ¼ , where Ndeg is the number of degenerate states in themanifold at g1 0= , andwhereKn ( 0> )
is related to Tan’s contact [59–67], and is the nth eigenvalue of the effective spin chainHamiltonian for the
system
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Above, , ,j j
x

j
y

j
zs s s s= ( ) is the vector of spin-1/2 Paulimatrices operating at site j and Jj is the coupling

coefficient between the j and j 1+ spins. Throughout this work, wewill refer toKn as ‘energies’. As a result, the
state with the highestKn corresponds to the ground state of the physical system for g 0> .

The coupling constants Jj depend exclusively on the trap’s shape, strength and particle number [1–3, 10, 20].
Importantly, this is independent of the details of the spin degree of freedom. For atoms in optical lattices, the
single particle solutions of the non-interacting system are Blochwaves, with Ls states in each band. To calculate
the spin chain coefficients we use the open source codeCONAN [20], which numerically calculates the
coefficients for an arbitrary potential and up to N 35» particles. Fromhere onwe setN= 30 unless otherwise
stated, and scale through thefilling of the lattice by varying the number of lattice wells Ls.

3. Regimes of the system

As stated above, the coefficients of the spin chain in the strongly-interacting limit are exclusively dependent on
the single particle problem.Hence, the spin chain coefficients are solely dependent on the filling of the optical
lattice.We consider the range offillings 1 2 2 n . Before calculating the coefficients of the spin chain using
CONANwe can discuss their expected form, based on the fact that they are calculated from theN lowest energy
single particle states of the non-interacting part ofHamiltonian (1). Over the range of filling considered the
single particle spectrumgoes fromhaving a single band to two bands. For any ν, the number of states in thefirst
band can bewritten as N N L1 sq n- - -( )( ) and the second band N L1 sq n - -( )( ), with θ denoting the
Heaviside function.

In the next section, wewill discuss the various regimes in the context of a single impurity ormagnon. The
systemwe consider has three distinct regimes:

1. 1;n low filling case with particles occupying a single band. As a result, the spin chain coefficients will be
homogeneous, with deviations only due tofinite size effects.

2. 1 2;n< < high filling region with a two-band model of an unequal number of states in each band. In this
regime, the spin chain coefficients are dominated by the N Ls- states in the second band, which have a
significant ‘box-like’ component to thewavefunctions due to their high energy. This contribution from the
box solutions defines the formof the coefficients, and, as wewill discuss below, will result in the coefficients
initially taking the formof a single (andmultiple) inverted ‘well’ potential.

3. 2;n = double filling is a special point, with two bands fully occupied. When mapped to the spin chain
picture this filling results in a staggering of the spin chain coefficients between two values. This is analogous
to the Su–Schriefer–Heeger (SSH)model [68, 69] of polyacetylene, andwe compare the singlemagnon case
to the SSHmodel in the next section.

As previously discussed, the spin chain coefficients depend exclusively on the single particle problem. In
addition, the contribution of each single particle state is dependent, in part, on its energy (see [20] and references
therein). As a result, for the 1n > case, the largest contributions to the coefficients come from the states in the
second band. For afilling of p L1 sn = + , with p Ls and p Î , p states are occupied in the second band.
The p states of the second band are largely influenced by the hardwall boundary, due to their large energy and the
moderate strength of the optical lattice, as can be seen infigure 2. For afilling corresponding to p= 1, the single
state in the second band, see figure 2(a), heavily dominates the formof the spin chain coefficients, which take the
formof an invertedwell, see figure 3(b). For p= 2 the coefficients have an inverted doublewell form, due to the
highest energy state which is shown infigure 2(b). However, thewell height for thisfilling is small, on the scale of

Figure 1. Illustration of themapping of the system to a spin chainwith coupling constants Jjwhen g  ¥.

3
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J6 10 max j
4~ ´ - ( ), which is effectively homogeneous, recovering the first regime, as seen infigure 3(c). The

multiple well regime of the spin chain lasts, on ameaningful scale, until p N 4~ , after which there is an
extended crossover region to the third regime of staggered coefficients. The transition from the ‘well-like’
structures to the special point of 2n = , while distinct, is extended over the region offilling approaching 2n = ,
for allN.

As discussed above, in the regime of 1n > the formof the spin chain coefficients is a result of the hard-wall
boundaries of the system. Infigure 3(c)we observe that the inverted ‘well-like’ regime crosses over to an
effectively homogeneous formquickly. This is entirely a result of the system size being rather large in one
dimension, withfinite-size effects only being substantial in the special case of a single atomover unit filling.
Reducing the atomnumberwill allow formultiple wells in the coefficients to be observed on a larger scale, e.g.
forN= 20 as shown infigure 4 (this case is considered inmore detail in appendix B).Whenwemove on to
discussmultiplemagnons in section 5, the extended regime ofmultiple inverted ‘wells’ for N 20~ will be
important.

At this point, it is worth noting that the choice of lattice strengthwill affect the numerical values obtained
throughout this work.However, the validity of the three regimes, which are themain focus of this paper, is away
from the extreme limits of the potential strength, i.e. for amoderate lattice strength. In the limit of a strong
lattice strength, the 1n < homogeneous regimewill still be present, however, the 1n > regimewill change in
nature as the excited states of the single particle spectrumwill no longer be largely influenced by the hardwall
boundary. The presence of the 2n = special point does not depend on the lattice strength. In theweak lattice
strength limit, the spin chain coefficients tend towards being homogeneous for all ν, as is the case for no
potential.

Figure 2.Highest energy single particle eigenfunctions of the non-interacting part ofHamiltonian (1) for (a) Ls= 29 and (b) Ls= 28
(N= 30).

Figure 3. Spin chain coefficients calculated byCONAN forN= 30 in the three distinct regimes of the system, circles (black) denote the
values calculated and lines (red) are only included to help visualisation. The coefficients for each regime have been normalised to their
maximum. (a) 1n case ( 1 2n = spin chain coefficients shown), (b), (c) 1n > case (b) p= 1 and (c) p= 2 and (d) the 2n = special
point.
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4. Single impurity

Weconsider a single spin-down fermion—the impurity—interactingwith N 1- spin-up fermions. In the
strongly-interacting limit, the spin of the impurity, in the spin chain, represents a singlemagnon.We have a basis
ofN possible states e.g., forN= 4, we have the basis

, , , .   ñ    ñ    ñ    ñ∣ ∣ ∣ ∣

For convenience, wewill denote each state as jñ∣ , with j giving the position in the spin chain of the spin-down
fermion, allowing thewavefunction to bewritten as j jj yYñ = å ñ∣ ( )∣ .

There is a simplemapping of the single spin-down fermion spin chainHamiltonian to a single particle tight-
bindingmodel with analogous hopping and potential.We canwrite the analogous single particleHamiltonian as

K t b b b b U b b , 5
j

N

j j j j j j j j
1

1
1 1å= + +

=
+ +

ˆ [ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ] ( )( ) † † †

where tj gives the the analogous hopping coefficient,Uj the analogous on-site potential and b j vacj = ñáˆ ∣ ∣
†

(b bj j=ˆ ( ˆ )
† †) are single particle creation (annihilation) operators, with vacñ∣ the normalised vacuum state. The

relations from the analogous parameters to the spin chain coefficients are

t J , 6j j= - ( )

U J J , 7j j j1= +- ( )

further details of themapping are given in appendix A.Note, j is an index of the spin chain sites—the original
fermions—and has nothing to dowith thewells (or sites) of the lattice potential, with j N1, 2, ,= ¼ .

4.1. Lowfilling regime
For 1n , the spin chain has a set of homogeneous coefficients, observed infigure 3(a). For themagnon/single
particle analogy the hopping and on-site potential are constant for j N1,¹ , i.e. t tj = ,U Uj = , with
t U2» - , and t U, 0> . At sites j N1,= the on-site potential has a value ofU U 2N1, = due to the hard-wall
boundaries. The effect of this inhomogeneity inHamiltonian (5) is, remarkably, tomake themagnon behave
more as if the spin chain had periodic boundary conditions in the highest energy state of the system (lowestKn),
as wewill show below.

We solve the stationary Schrödinger equation forHamiltonian (5)with the potential and hopping as
specified above (for a detailed derivation see appendix C).Wefind the nth eigenfunction in the spectrum to be of
the form

N
j

1

2
e e , 8

j

N
k j k j

1

i i 1n nåYñ = + ñ
=

- -∣ ( )∣ ( )( )

Figure 4. Same as for figure 3, except forN= 20.
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where the quasi-momenta kn are quantised as

k
n

N
n N, 0, 1, , 1. 9n

p
= = ¼ - ( )

The spectrum is given by

K U t k2 cos . 10n n= - ( ) ( )

Notice, in our case, the quasi-momentum k= 0 is allowed, resulting in the lowestKn state having a truly
homogeneous density in the chain. Similar forms of the spectrum and quasi-momenta are found by solving the
strongly-interacting one-dimensional Fermi gaswith hardwall boundaries by Bethe ansatz [70].

For the range 1 2 1 n , we calculate the spin chain coefficients for each Lsusing the open source code
CONAN.Using these coefficients we then solve the stationary Schrödinger equation forHamiltonian (4) by
exact diagonalization and compare the eigenfunctions and spectrum to equations (8) and (10) respectively.We
find perfect agreement between the numerical and analytical results for 1n < , as shown for 1 2n = infigure 5.
However, as the filling approaches 1n = we, of course, observe small deviations due tofinite size effects.

4.2.Highfilling regime
Aswe increase the filling beyond 1n = , the physics of the single spin-down fermion change qualitatively in a
dramatic way. As discussed in section 3, this is the result of theN lowest energy single particle statesfilling the
lowest band and partially occupying the second band for 1n > . The formof the spin chain coefficients was
discussed in section 3 and is shown infigures 3(b) and (c). The spin chain coefficients for1 2n< < take the
formof p inverted finite wells, with thewell height being small in some cases. As a result, both the analogous
tight-bindingmodel hopping and on-site potential acquire an oscillatory, inhomogeneous behaviour consisting
of pwells. Using themappings of equations (6) and (7), the potential takes the formof an inverted finite well, and
the hopping a finite well of smallermagnitude.

We develop an approximate theory for the case of p= 1, which can be extended tomultiple wells, assuming
no coupling between eachwell.We expand theHamiltonian parameters around the centre of thewell and
account for the hopping via an effectivemass that is dependent on the hopping strength. Reference [71]
considers a similar derivation for the case of a 1DBose–Hubbardmodel. For a full derivation see appendixD.
Following these approximations, we obtain the eigenstates to be of the form [71]

s
H z z

N

2
e 1

1

2
11

z
s s

z z2
N
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2
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!
( ) ( )

with  and  being characterising variables for the potential and hopping strengths respectively,  the
normalisation constant,Hs the sthHermite polynomial, z j N 1 2= - +( ) and s N0, 1, , 1= ¼ -( ). The
characterising parameters of  and  are defined in appendixD. The solutions are that of the harmonic
oscillator with aπ-phase term. The approximation to the energy spectrum is given by [71]

Figure 5.Comparison of exact diagonalization of CONANcoefficients shown by circles (black) and the analyticalmodel,
equations (11) and (12), given by a solid line (red) in the spectrum and squares (red) for the probability densities for 1 2n = ,N= 30.
(a)The energy spectrum, ordered so that the groundstate of the system (the highestKn state) corresponds to the index zero, (b)
groundstate (N n1 0- - = ) probability density, (c)first excited state (N n1 1- - = ) probability density.
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K E T s2
1

2
, 12s off » - +⎜ ⎟⎛

⎝
⎞
⎠ ( )

with Eoff being a constant offset to the energy that is calculated during the reduction of the hopping in the
effectivemass approximation.

Infigure 6, we compare the analytical eigenfunctions and eigenvalues (equations (11) and (12) respectively)
to the numerical exact diagonalization of the spin chainHamiltonianwith the coefficients calculated by
CONAN for Ls= 29,N= 30. There is an excellent agreement at low energies (highKs). As expected, due to the
finite depth of thewell, we recover planewave solutions like that for 1n for high energies.

4.3.Doublefilling
At 2n = everywell of the optical lattice is doubly occupied, and there are N 2 states occupied in each of the first
two bands of the single particle spectrum. This results in a distortion of the spin chain similar to that of the
Peierls transition [72], seefigure 7. From this, it would be expected that the spin chain coefficients are staggered
between two values of intra- and inter-well couplings, as illustrated in figure 7, with the coefficients form given in
figures 3(d) and 4(d). The spin chain coefficients between particles in a single well of the optical lattice are
naturally larger than that between particles in separate wells. The staggering in the spin chain coefficients is a
result of two atoms sitting in single wells of the optical lattice potential, whichwill occur for any lattice length as
long as there is double filling.

For this special point, the single particle tight-bindingmodel on-site potential for j N1,¹ is essentially
constant and the hopping is staggered between two values. This formof the single particleHamiltonian is similar
to that of the SSHmodel for polyacetylene [68, 69]. The SSHmodel has a unit cell comprising of two sites (A and
B), and itsHamiltonian has the form [73, 74]

H t t b b t t b bh.c. h.c. , 13
u

N

u u
u

N

u uSSH
1

2

A, B,
1

2 1

A, 1 B,
^ ^ ^ ^ ^å åd d= + + + - +

= =

-

+( )[ ] ( )[ ] ( )† †/ /

Figure 6.Comparison of exact diagonalization of CONANcoefficients shown by circles (black) and the analyticalmodel,
equations (11) and (12), given by a solid line (red) for N1 1 1.033n = + = ,N= 30. (a)The energy spectrum, (b) groundstate
(s= 0) eigenfunction, (c)first excited state (s= 1) eigenfunction.

Figure 7. Illustration of themapping of the system to a spin chainwhen g  ¥ at doublefilling ( 2n = )with coupling constants J1
and J2.
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where bA B v,
ˆ

( )
†

and b vA B ,
ˆ ( ) act on the A(B) sub-lattice site of the unit cell u.With hopping coefficients of t td+( )

within each unit cell and t td-( ) between adjacent unit cells. To compare to the numerics wefind the average t
and td across thewhole spin chain. Thismodel has two bands, whichwe label± . The values obtained for t and
td are dependent on the lattice strength. To increase the ratio t td , an increase in the lattice strength is required.
This can bemotivated by the diagramoffigure 7, where it can be visualised that increasing the lattice strength
would in effect decrease the coupling between atoms in different lattice wells, giving a corresponding increase in
the ratio t td .

By observing the spin chain coefficeint data infigures 3(d) and 4(d), we can treat the single particle on-site
potential as a constant with a strength of t2 , that is, we assume that the physics is dominated by the staggered
tunnelling over the inhomogeneity of the potential at the edges. The analogous single particleHamiltonian at

2n = is then of the approximate form,

K t b b b b H2 . 14
u

N

A u A u B u B u
1

1

2

, , , , SSHå= + -
=

ˆ ( ˆ ˆ ˆ ˆ ) ˆ ( )( ) † †

In appendix Ewe solveHamiltonian (14) for the eigenstates and spectrum.Quoting the results of this
derivation, the eigenstates are given by

j j je e , 15
j

N

k
kj

k
kj

1

i iå f fYñ = - ñ
=

-
-∣ [ ( ) ( ) ]∣ ( )

where  is a normalisation factor, andf is the Bloch function of the SSHHamiltonian (13),

x e
1

, 16k

ki
f =  k⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

( )

where the± refers to the two bands of themodel. The Bloch functions are periodic, x x2k kf f+ =( ) ( ), and the
phaseκ in equation (16) is given by

k
t

t
karctan tan . 17k

d
= ⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )

The allowed quasi-momenta are obtained from the open boundary conditions and are given by

k
N

n k n
N1

1
, 1, 2, ,

2
. 18p k=

+
- = ¼[ ( )] ( )

The quasi-energy forHamiltonian (14) is

K t t k t k2 2 cos sin . 19n
2 2 2 2d= + ( ) ( ) ( )

Infigure 8, we compare the analytical eigenfunctions and spectrum (equations (15) and (19) respectively) to
the results from solving the stationary Schrödinger equation forHamiltonian (4) by exact diagonalization using
the spin chain coefficients calculated byCONAN for 2n = .Wefind excellent agreement for the spectrumof the
model. For all but the groundstate, we observe good agreement between the analytical and numerical
eigenfunctions, see figures 8(c)–(e). For the groundstate of the system, the highestKn state, we observe a
substantial discrepancy between the analytical eigenfunctions and the exact diagonalization due tofinite size
effects, seen infigure 8(b). Thefinite size of the system results in a small well-like perturbation to the intra-well
coupling t td+( ) of order J z10 max j

6 4- ( ) , again z j N 1 2= - +( ) . This perturbation can be seen in the form
of the spin chain coefficients shown infigure 3(d), with the decrease of order J0.05 max j( ) in the centre of the
chain for the larger of the staggered coefficients. Unsurprisingly, this deviation results in the significant
modification of the low energy, highKn, states,most specifically to the groundstate.

5.Magnon–magnon interactions inmulti-impurity systems

5.1. Twomagnons
Wenowmove on to discuss the effects of interaction betweenmagnonswithin the spin chain.We calculate the
ground state energy for two spin-down fermions, whichwe denote K I

0 , by exact diagonalization across the three
regimes previously discussed and quantify the interactions between the impurities by themagnon–magnon
energy shift,

K K K , 20I
Int 0 0

NI= - ( )

with K0
NI being the non-interacting ground state for two hard-core bosons (freemagnons), i.e. the sumof the

ground andfirst excited singlemagnon energies.
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To support the discussionwewill refer to the calculated eigenfunctions for the twomagnons.Wewrite the
magnon–magnonwavefunction in the basis of states j j,1 2ñ∣ , with ji denoting the position of the ith spin, i.e.

j j j j, , . 21
j j

1 2 1 2

1 2

å yY = ñ
<

( )∣ ( )

In plotting the eigenfunctions, we plot the coefficients j j,1 2y ( ), with amirror image across the line j j1 2= .
Infigure 9(a), we show KInt as a function of the filling ν for N 16, 20, 24= , with ν scaled through by varying

the number of lattice sites Ls. To see the behaviour of the interactions clearly we also plot, infigure 9(b), KInt as a
function of the number of particles off of unit filling p, i.e. N N pn = -( ). Themagnon–magnon interaction
shift is found to be attractive in all cases.

We observe a clear transition at 1n = (p= 0). This is to be expected fromour investigation of the single
impurity system. This is a transition froma homogeneous dilute regime, to a regimewith a localising ‘well-like’
potential.We observe an increase in the interaction for the single well case, p= 1, as the twomagnons are
localised in close proximity of each other. This is clear in the eigenfunction figure 10(a), with the state heavily
localised to a regionwhere the twomagnons are close together. For p= 2 there is a substantial decrease in the
interaction energy shift, due to the twomagnons being spatially separated by the doublewell formof the spin

Figure 8.Comparison of exact diagonalization of CONANcoefficients shown by circles (black) and the analyticalmodel,
equations (15) and (19), given by a solid line (red) for 2n = ,N= 30. (a)The energy spectrum in the reduced zone scheme, (b)–(f)
eigenfunctions for the (b) groundstate of system (highestKn), (c)first excited state, (e)fifth excited state, (f) sixth excited state.

Figure 9.Magnon–magnon energy shift, equation (20), for two spin-down fermions on a log-scale forN= 16 circles (black),N= 20
diamonds (red), andN= 24 squares (blue outline). (a)As a function offilling ν and (b) a function of the number of particles over unit
filling p.
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chain coefficients. This is observed for the case of p= 3 in the eigenfunction offigure 10(b), with the state heavily
localised to a regionwhere the twomagnons arewell separated. As p is increased the approximation ofmultiple
wells with no coupling between thembreaks down, resulting in an increase in the interaction strength as
observedwith themagnons delocalised across the system as seen infigure 10(c).

We observe a pronounced decrease of the interaction strength for allN at double filling, 2n = . As already
discussed in section 4.3, at this point, excluding finite size effects, we have an effective SSHmodel for the system.
This results in a reduced interaction of the twomagnons. This can be seen in the eigenfunctions, with a shift in
the distribution of the coefficients towards themagnons being further apart. That is, considering the lower
triangle half offigures 10(c) and (d), there is a small shift in the coefficients of the basis towards values of the
magnons being further apart, i.e. towards the point of j j, 20, 01 2 =( ) ( ), resulting in the decrease in interaction
strength.

5.2. Spin balanced case
Using the density-matrix-renormalisation-group, we obtain the ground state energies, K I

0 , for the case of
balanced spins N N N 2= =  in the spin chain.We again calculate KInt, given by equation (20), which is now
an N 2 magnon energy shift. The non-interacting groundstate K0

NI is in this case the sumof the first N 2 single
magnons energies, i.e. the highest N 2 states inKn.

Infigure 11(a)we observe a collapse of the transition observed for twomagnons for allN. The collapse is due
to thefixed proportion ofmagnons in the system as the system size is altered. The transition is now, in the
fermionic language formagnons, a standardmetal–insulator–metal transition. The discontinuity of the energy
shift at the transition has amagnitude of K L 5sIntD » .

Figure 10.Eigenfunctions for the case of two impurities (magnon–magnon) j j,1 2y ( ), which is the coefficient to the basis state j j,1 2ñ∣ .
All plots are forN= 20 and afilling of (a) 1.053n = (p= 1), (b) 1.176n = (p= 3), (c) 1.818n = (p= 9) and (d) 2n = (p= 10).

Figure 11. (a)Energy shift due to interactions on a log-scale withN= 16 circles (black),N= 20 diamonds (red), andN= 24 squares
(blue outline) for the spin balanced case N N N 2= =  . (b) K N N K2 4 2Int Int( ) ( ( )), the ratio of the balanced interaction
strength to the two spin-down fermion case for the sameN considered in (a).
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For 1n < , the interaction energy shifts of the N 2 magnons arewell described by the two-magnon energy
shifts, as can be seen by the approximately constant ratio of the balanced spin and twomagnon case forfixedN,
K N N K2 4 2Int Int( ) ( ( )) infigure 11(b). Thismeans that for 1n < the interaction is a result ofmainly two-
body processes. As thefilling approaches unity the nature of the interactions goes through a transition, due to the
behaviour of the twomagnons systemdiscussed in the previous section.Overall for 1n > the nature of the
interactions is not well described by only two-body processes, due to the formation of ‘well-like’ structure in the
Hamiltonian as discussed previously.

6. Conclusions

In this work, we have considered the limit of both strong repulsive interactions and one dimension of the Fermi
polaron problem in an optical lattice. In this limit polaronic-behaviour is not expected, instead, we find three
distinct regimes for the impurity, ormagnon, over a reasonable range offillings. For lowfilling, 1n the
magnon reproduces a single particle tight-bindingmodel.With highfilling, 1n > , we observe a localisation of
the low energy (highKn) singlemagnon eigenfunctions, due to a ‘well-like’ form to theHamiltonian, which is a
direct result of the occupation of the second band of the lattice and themoderate strength of the optical lattice.
The eigenfunctions at low energy in this regime reproduce the harmonic well eigenfunctions with aπ-phase
term. Thefinal regime occurs at the point of double filling, 2n = , where the spin chain coefficients are of a
staggered form. TheHamiltonian, whenwritten as an analogous tight bindingmodel, takes the formof thewell-
known SSHmodel. For all but the lowest state of the spectrum, the singlemagnon eigenfunctions reproduce that
of the SSHmodel. However, at low energies the eigenfunctions have adverse finite size effects that result in
discrepancies,most significantly to the groundstate of the system (highestKn state).

In thefinal section of this work, we consider the nature of the interactions ofmultiple spin-down fermions
by considering twomagnons and the important spin balanced case.We observe a rich transition reflecting the
three regimes present. There is a clearmetal–insulator–metal transition as the filling is increased, which
corresponds to the three regimes present for the singlemagnon.

In summary, we have shown that a single spin impurity in a spin-1/2 Fermi gas within an optical lattice
potential in the limit of one dimension and strong repulsive interactions can have a rich set of behaviour
dependent on thefilling of the lattice. The system is found to replicate the quantummodels of homogeneous
systems,finite wells and the SSHmodel.
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AppendixA. Tight-bindingmodel analogy

The spin chainHamiltonian, equation (4), for a single spin-down fermion can bewritten as amatrix in the basis
of jñ∣ ( j denotes the position of the spin-down fermion). For examplewithN= 4we have

K

J J
J J J J

J J J J
J J

0 0
0

0
0 0

, A1

1 1

1 1 2 2

2 2 3 3

3 3

=

-
- + -

- + -
-

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ˆ ( )

with Jj denoting the spin chain coefficient between the j and j 1+ site of the spin chain. Note that due to the
hard-wall boundaries the edge sites of the chain are only coupled to one other site. This results in an
inhomogeneity at the edges of the spin chainwhich has interesting effects on the system.

We can triviallymap theHamiltonian for a single spin-down fermion to that of a single particle tight-
bindingmodel, as discussed in themain text with the analogousHamiltonian given in equation (5). Looking at
the example of equation (A1), we simply have a set of diagonal terms denoting an on-site potential,U, and off-
diagonal terms denoting hopping strength between nearest-neighbours, t. This results in themapping between
spin chain coefficient and the tight-bindingmodel given in equations (6) and (7) in themain text.
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Appendix B. Formof the effective spin chain

In section 3, we discuss the three regimes of the single-particle system as a function offilling in the optical lattice
potential. These three regimes, when the strong interaction limit is taken, result in stark differences in behaviour
for the spin chain coefficients ofHamiltonian (4). In this appendixwe give a brief discussion of the formof the
spin chain coefficients across the full region considered, 1 2 2 n , as computed by the open source code
CONAN [20] forN= 20.

As expectedwe observe three distinct regimes across the range offillings considered, see figure 12. For 1n ,
there is a homogeneous regime, withfinite size effects when approaching 1n = . The transition to the inverted
‘well-like’ forms of 1 2n< < is sharp. As thefilling is increased above unity, i.e. N N pn = -( ), for each p
there can be seen to be p ‘wells’ in the formof the coefficients. Between the second and third regime, there is an
extended transition from about p 5~ until the special point of 2n = . Finally, at doublefilling, 2n = , the
coefficients take on a staggering formbetween intra- and inter-well couplings between particles.

AppendixC. Lowfilling derivation

In this regime, we have a clear consistent form to the spin chain coefficients, see figure 3(a).Mapping the
coefficients to the analogous single particle tight-bindingHamiltonian, see equations (6) and (7), there is a
constant negative hopping of value t- and an on-site potential that is constant for j N1,¹ at a value of
U t2= , withU t, 0> . At the sites j N1,= we have the on-site potential equal to t.

The analogous tight-bindingHamiltonian in this regime is given by

K t b b b b t b b t b b b b2 , C1
j

N

j j j j
j

N

j j N N
1

1 1
2

1

1 1å å= - + + + +
=

+ +
=

-
ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( ˆ ˆ ˆ ˆ ) ( )

† † † † †

with b bj j
ˆ ( ˆ )

†
denoting the annihilation(creation) operator at site j. Excluding the sites j N1,= , we have a simple

tight-bindingHamiltonian andwewould expect planewave solutions at site j, with j N1,¹ , of the form

C Be e , C2j
kj

j
kji i= + - ( )

where k is themomentum andB a coefficient to be determined.Writing the stationary Schrödinger equation of
Hamiltonian (C1), for j N1,¹ in a discretized formwe obtain

t C C tC K C2 . C3j j j n j1 1- + + =+ -( ) ( )

The spectrumof this homogeneous system is

K t t k2 2 cos . C4n = - ( ) ( )

Wenowderive the exact formofCj, and the quasi-momentum k.We can solve forB1 andC1 by considering
j= 1 and j= 2 for the discretizedHamiltonian equation (C3). Solving these results in

B

C

e ,

1 e . C5

k

k

1
i

1
i

=
= + ( )

Figure 12.Normalised spin chain coefficients, Jj, forN= 20 over the range offillings ν considered.
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Wecan similarly findBN andCN using j=N and j N 1= - , giving

B

C e

e ,

e 1 . C6
N

k N

N
kN ik

i 2 1

i

=
= +

+

( ) ( )

( )

Setting B BN1 = , we get the quasi-momenta to be quantised as

k
n

N
n, C7p

= Î ( )

therefore n N0, 1, , 1= ¼ - . Finally, from this derivation, we find a formof the general jth coefficient andfind
the normalised eigenfunctions to be given by

N
j

1

2
e e . C8n

j

N
k j k j

1

i i 1n nåY ñ = + ñ
=

- -∣ ( )∣ ( )( )

AppendixD.Highfilling derivation

For 1n > , the analogous tight-bindingHamiltonian has a finite ‘well-like’ structure to both the potential and
hopping, as discussed in section 4.2. In this appendix, we derive approximate eigenfunctions and spectrum for
the case of one particle over unit filling, L1 1 sn = + , corresponding to a single well in the tunnelling
coefficients.

Tomake the derivation simpler, we centre the spin chain sites at the origin, that is j j N 1 2 - +( ) , and
wewill label this coordinate as z. For the analogous tight-bindingHamiltonianwe can approximate the potential
and hopping as

U U U z

t t t z

cos

cos
1

2
, D1

z

z

0 1

0 1

t

t

= +

=- - +⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

( )

with N2 3t p= -( ) the spatial frequency, andU0,U1, t0 and t1 are positive ( 0> ) constants, with each found
byfitting equations (D1) to the analogous potential and hopping obtained from themapping of the spin chain
coefficients by equations (6) and (7). Note, that the cosine term in equations (D1) allows for thefinite size effect
of decreased spin chain coefficients at the boundaries to be accounted for.

We solve the analogous tight-bindingHamiltonian (equation (5)) for the potential and hopping of
equations (D1).We can define the hopping as positive by considering a phase shift to the full eigenfunction of the
effective form

1 , D2z z
zyY = -( ) ( )

resulting in the single-particleHamiltonian for zy being

K U b b t b b h.c. , D3
z N

N

z z z z z z
1

1 2

1 2

1å= + ¢ +
=- -

-

+ˆ [ ˆ ˆ ( ˆ ˆ )] ( )( )

( )

( ) † †

with t tz z¢ = - .
Expanding to zeroth order around the centre of the system, z= 0, we get aHamiltonian of the form

K U U b b t t b b h.c. . D4
z N

N

z z z z
1

1 2

1 2
0 1 0 1

1å» + + + +
=- -

-

+ˆ [( ) ˆ ˆ ( )( ˆ ˆ )] ( )( )

( )

( ) † †

This can be diagonalized by Fourier transform to obtain the eigenvalues and expanding for the low energy
spectra around k= 0we obtain

E U U t t t t k2 , D5s s
0 1 0 1 0 1 2» + + + - +( ) ( ) ( )

with ks being themomentumof state s.We can separate equation (D5) into two parts, with thefirst being a
constant offset of

E U U t t2 , D6off
0 1 0 1= + + +( ) ( )

whichwill be accounted for in the final energy. The second term is related to the energy of a particle with an
effectivemass m. Equating the last term in equation (D5) to k m2s

2 2  gives an effectivemass of

m
t t2

. D7
2

0 1

 = -
+( )

( )

Note, t t, 00 1 > , therefore, the effectivemass is negative, as would be expected from the formof the on-site
potential.
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Wecan nowwrite theHamiltonian as an effectivemodel of only a potential, with the hopping properties
accounted for by the effectivemass [71]. Taking the expansion around z= 0 of the potential tofirst order we
obtain

U U U U z
1

2
. D8z

0 1 1 2» + - ( )

Taking x to be the continuous counterpart of z, we approximate theHamiltonian to be

m

x

x
U x x x

2

d

d

1

2
, D9

2 2

2
1 2 2


y

t y y-
¢

+ = -
( ) ( ) ( ) ( )

wherewe have defined themass as negative m m¢ = - , and E Eoff = - , with E being the eigenvalues of
equation (D9)without the offset. The formof equation (D9) is that of thewell knownharmonic oscillator, with
an analogous frequency of

U

m
. D102

1 2

w
t

=
¢

( )

From this we can derive two characteristic quantities of the harmonic well problem to be [71]

w U t t2
1

2
2 , D111 2 0 1 t= + =( ) ( )

m w U

t t
, D12

1

2
1 2

0 1





t¢
=

+
=

( )
( )

wherewe have defined

U
1

2
, D131 2 t= ( )

t t , D140 1 = +( ) ( )

which are characterising constants for the potential and hopping. Equations (D11) and (D12) agree with that of
[71], where they consider a similar derivation in the case of a 1DBose–HubbardHamiltonian.

We can nowwrite out the approximate eigenfunction, using z, to be [71]

s
H z z

N

2
e 1

1

2
D15

s
z

z

s
z z2

N

N

1
2

1
2

4
4

2 




åyñ » - +

+

=-

=
-

+

+ ⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∣

( !)
( ) ( )

and the eigenvalues to be

K E s2
1

2
, D16s off » - +⎜ ⎟⎛

⎝
⎞
⎠ ( )

where s N0, 1, , 1= ¼ - ,Hs is the sthHermite polynomial and  is a normalisation constant. Infigure 6 of the
main text equation (D15) and equation (D16) give the analytical eigenfunctions and energies respectively.

Appendix E.Doublefilling derivation

As discussed in themain text, for 2n = wehave a similar form for the analogous tight-bindingHamiltonian to
that of the SSHmodel [68, 69, 73, 74]. In this appendix, we focus on the solutions to the SSHHamiltonian of
equation (13) in themain text.We can recast the SSHHamiltonian into the form

H t t b b b b1 . E1
j

N
j

j j j jSSH
1

1 1å d= - - +
=

+ +
ˆ ( ( ) )[ ˆ ˆ ˆ ˆ ] ( )

† †

Wenow solve the stationary Schrödinger equation forHamiltonian (E1). The eigenfunction can bewritten as
the sumover a set of coefficients at each site, j jj yYñ = å ñ∣ ( )∣ . Inserting the coefficient formof the
eigenfunction into the stationary Schrödinger equationwe obtained a set of equations of the form

t t j t t j j1 1 1 1 , E2j j 1 d y d y y- - + + - - - =-( ( ) ) ( ) ( ( ) ) ( ) ( ) ( )

where jy ( )will have the form j j e kjiy f=( ) ( ) , with jf ( ) being the Bloch functions of the unit cell.We also
know that the coefficients in the two site unit cellmust only differ by a phase factor, therefore, we take an ansatz
for the unit cell coefficients of the form
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j e
1

, E3
i

f =  k
⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

with the± corresponding to the two bands of themodel. Inserting the ansatz for the eigenfunction into
equation (E2) and solving forκ and the quasi-energy òwe get

t

t
karctan tan E4k

d
=

⎡
⎣⎢

⎤
⎦⎥( ) ( )

and

t k t k2 cos sin . E52 2 2 2 d=  +( ) ( ) ( )

In the limit of t 0d  , the expected solution of a homogeneous hoppingmodel is recovered.
The full set of eigenfunctions across the lattice can be found, after imposing the boundary conditions, to be

of the form

j j je e , E6
j

k
kj

k
kji iå f fY = - ñ-

-[ ( ) ( ) ]∣ ( )

where  is the normalisation coefficient. The quasi-momenta are

k
N

n k
1

1
, E7p k=

+
-( ( )) ( )

with n N1, 2, , 2= ¼ (two bands). Theκ correction to the quasi-momenta is small, as td is small, and the
allowed values of the quasi-momenta can be easily found numerically. The full energy spectrum for the double
fillingHamiltonian (14) is given by

K t2 . E8n =  ( )
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