15 research outputs found

    Three Essays on Mental Illness at Work

    No full text
    Although there is growing interest in mental health from governmental agencies, employees, and workplaces, Follmer and Jones’ (2018) call for additional research on mental illness suggests that this area of research remains understudied. This dissertation explores mental illness at work in the context of PTSD, leader mental health, and the impact of occupational depression on planning, activation, and performance. After a short overview of mental illness at work, Chapter 2 explores workplace stressors of post-traumatic stress disorder (PTSD) through a systematic review and meta-analysis of 85 studies, finding that workplace job demands, exposure to violence, sexual harassment, bullying, and injury are all positively related to PTSD symptomology. Additional moderator analysis suggests that the measurement of PTSD and employee occupational group affect the relationship between workplace stressors and PTSD symptoms. Chapter 3 investigates leader mental health, providing a comprehensive review of the 33 articles on leader mental health. Folk beliefs of leadership suggest that leaders should have good mental health: they have high job control, are compensated more, enjoy higher socioeconomic status, less bullying, and less injustice. However, despite these positive work aspects, there are organizational factors that would suggest that leaders should suffer from mental health problems, such as increased demands, higher workload and responsibility, work-family and family-work conflict, and the inability to detach from work. This systematic review suggests that leaders are not immune to mental health problems: they experience burnout, stress, depression, anxiety, mental distress, and sleep problems due to a variety of personal and situational factors. Finally, Chapter 4 tests a multilevel model of planning, exploring the impact of occupational depression and interruptions on planning, activation, and performance, where time management planning and contingent planning lead to activation, occupational depression and interruptions moderate those relationships, and activation ultimately leads to performance. Using an experiment combined with experience sampling methods, the results suggest slightly different results at the between-person and within-person levels. However, the consistent finding at both levels was that occupational depression moderates the relationship between time management planning and activation, and between contingent planning and activation

    Elaboration and characterization of cathode and electrolyte materials for solid oxide fuel cell

    No full text
    L'Ă©nergie produite par des matiĂšres fossiles, pĂ©trole et charbon, va se rarĂ©fier de maniĂšre inĂ©luctable et couter de plus en plus cher Ă  moyen terme. Pour pallier Ă  la fin des matiĂšres fossiles, le dĂ©veloppement d'Ă©nergies alternatives est indispensable. Parmi celles-ci, la production d'Ă©lectricitĂ© et de chaleur Ă  partir d'hydrogĂšne commence Ă  se dĂ©velopper grĂące aux piles Ă  combustible (PAC) depuis les trĂšs faibles puissances (des microwatts pour alimenter les capteurs) jusqu'aux fortes puissances (des MĂ©gawatts pour l'industrie) en passant par des puissances moyennes (des kilowatts pour le rĂ©sidentiel). Une PAC est constituĂ©e de 3 Ă©lĂ©ments : 2 Ă©lectrodes (anode et cathode) sĂ©parĂ©es par un Ă©lectrolyte. Dans cette thĂšse, ces 3 Ă©lĂ©ments sont constituĂ©s d'oxydes solides et la pile est appelĂ©e SOFC (Solid Oxide Fuel Cell). Les piles SOFC actuellement commercialisĂ©es fonctionnent Ă  de trĂšs hautes tempĂ©ratures, typiquement supĂ©rieures Ă  800°C. L'objectif du travail a Ă©tĂ© d'Ă©laborer des oxydes pour diminuer cette tempĂ©rature vers 600°C ce qui permet d'utiliser de l'acier pour contenir ces piles. Pour que la pile SOFC fonctionne Ă  cette tempĂ©rature, il est impĂ©ratif de diminuer la rĂ©sistance Ă©lectrique des 2 Ă©lectrodes et de l'Ă©lectrolyte de maniĂšre Ă  rĂ©cupĂ©rer une tension Ă©lectrique continue maximale aux bornes de la pile et aussi Ă  faire passer un courant Ă©lectrique Ă©levĂ© dans celle-ci. La cathode, en contact avec l'oxygĂšne de l'air, est l'Ă©lĂ©ment le plus critique Ă  optimiser. Nous avons choisi comme matĂ©riau de cathode un matĂ©riau dĂ©jĂ  Ă©tudiĂ©, La₀.₆Sr₀.₄Co₀.₈Fe₀.₂O₃ (LSCF) et comme Ă©lectrolyte Ce₀.₉Gd₀.₁O₂ (CGO) connu comme performant en dessous de 650 °C. Nous avons Ă©laborĂ© ces matĂ©riaux par une mĂ©thode de chimie douce, la mĂ©thode sol-gel PĂ©chini, et caractĂ©risĂ© ceuxi-ci par diffraction de rayons X et microscopie Ă©lectronique Ă  balayage. Une part importante du travail a Ă©tĂ© la caractĂ©risation Ă©lectrique Ă  l'aide de mesures d'impĂ©dance complexe dans une large gamme de frĂ©quence (0,05 Hz Ă  2 MHz) et de tempĂ©rature (300°C Ă  700 °C). Le meilleur rĂ©sultat a Ă©tĂ© obtenu avec une cathode composite poreuse d'Ă©paisseur 40 ”m constituĂ©e Ă  masses Ă©gales de LSCF et de CGO dĂ©posĂ©e par sĂ©rigraphie sur une cĂ©ramique dense de CGO d'Ă©paisseur 1,5 mm. De plus, un film mince dense de LSCF d'Ă©paisseur 0,1 ”m environ a Ă©tĂ© dĂ©posĂ© par centrifugation pour amĂ©liorer l'interface entre la cathode et l'Ă©lectrolyte. À 600 °C la rĂ©sistance de cette cathode a Ă©tĂ© mesurĂ©e Ă  0,13 Ω pour 1 cmÂČ de cathode : cette valeur est Ă  l'Ă©tat de l'art. Une Ă©tude du vieillissement de cette cathode et de l'Ă©lectrolyte a Ă©tĂ© effectuĂ©e Ă  600 °C pendant 1000 h en continu sous air : cela s'est traduit par une augmentation de la rĂ©sistance de la cathode de 32%. Ceci peut ĂȘtre liĂ© Ă  la diffĂ©rence de valeurs des coefficients d'expansion thermique des matĂ©riaux de cathode et d'Ă©lectrolyte.Energy made from fossil fuels, oil or coal, is becoming increasingly rare and its price will increase in the near future. Developing alternative energy sources could compensate the use of fossil fuel. Particularly, an alternative form of energy is being developed through fuel cells, through the production of electricity and heat from hydrogen. Fuel cells can provide low wattage (microwatts for sensor applications), medium wattage (kilowatts for residential applications) and high wattage (megawatts for the industry). A fuel cell consists of 3 components : 2 electrodes (anode and cathode) separated by an electrolyte. In my work, I use solid pxide materials for these three elements in order to expand on the literature of Solid Oxide Fuel Cell (SOFC). Commercialized SOFCs currently operate at very high temperatures, typically above 800°C. The objective of this study was to develop oxides that could decrease the working temperature of the cell to 600°C, which would allow the use of steel to contain these fuel cells. In order to enable the SOFC to operate at this temperature, it is imperative to decrease the electrical resistances of the two electrodes and electrolyte in order to collect a continuous voltage which is maximal at the terminals of the fuel cell, and also to have a high electric current going through the fuel cell. The cathode, in contact with the oxygen present in the atmosphere, is the most critical element to be optimized. I close as a cathode material La₀.₆Sr₀.₄Co₀.₈Fe₀.₂O₃ (LSCF), which has already been studied. As electrolyte, I used Ce₀.₉Gd₀.₁O₂ (CGO) which is known to work below 650°C. I synthesized these materials through the Pechini method, a soft chemistry sol-gel method. The materials were characterized by X-ray diffraction and scanning electron microscopy. An important aspect of this work was the electrical characterization using complex impedance measurements in a wide frequency range (0,05 Hz to 2 MHz) and temperature (300°C to 700°C). The best result was obtained with a 40 ”m thick, porous, composite cathode (LSCF/CGO 50/50 wt%) was deposited by screen printing on a 1,5 mm thick and dense CGO ceramic. In addition, a dense thin film of LSCF with a thickness of about 0,1 ”m was spin-coated between the cathode and the electrolyte to improve the interface. At 600°C the measured resistance of the cathode was 0,13 Ω for 1 cmÂČ : this value is similar to the results found in the state of the art. An aging study of the cathode and the electrolyte was carried out at 600 °C for 1000 h in air : the resistance of the cathode increased of 32%. This may be related to the different values of the thermal expansion coefficients of the cathode and electrolyte materials

    Élaboration et caractĂ©risations de matĂ©riaux de cathode et d'Ă©lectrolyte pour pile Ă  combustible Ă  oxyde solide

    No full text
    Energy made from fossil fuels, oil or coal, is becoming increasingly rare and its price will increase in the near future. Developing alternative energy sources could compensate the use of fossil fuel. Particularly, an alternative form of energy is being developed through fuel cells, through the production of electricity and heat from hydrogen. Fuel cells can provide low wattage (microwatts for sensor applications), medium wattage (kilowatts for residential applications) and high wattage (megawatts for the industry). A fuel cell consists of 3 components : 2 electrodes (anode and cathode) separated by an electrolyte. In my work, I use solid pxide materials for these three elements in order to expand on the literature of Solid Oxide Fuel Cell (SOFC). Commercialized SOFCs currently operate at very high temperatures, typically above 800°C. The objective of this study was to develop oxides that could decrease the working temperature of the cell to 600°C, which would allow the use of steel to contain these fuel cells. In order to enable the SOFC to operate at this temperature, it is imperative to decrease the electrical resistances of the two electrodes and electrolyte in order to collect a continuous voltage which is maximal at the terminals of the fuel cell, and also to have a high electric current going through the fuel cell. The cathode, in contact with the oxygen present in the atmosphere, is the most critical element to be optimized. I close as a cathode material La₀.₆Sr₀.₄Co₀.₈Fe₀.₂O₃ (LSCF), which has already been studied. As electrolyte, I used Ce₀.₉Gd₀.₁O₂ (CGO) which is known to work below 650°C. I synthesized these materials through the Pechini method, a soft chemistry sol-gel method. The materials were characterized by X-ray diffraction and scanning electron microscopy. An important aspect of this work was the electrical characterization using complex impedance measurements in a wide frequency range (0,05 Hz to 2 MHz) and temperature (300°C to 700°C). The best result was obtained with a 40 ”m thick, porous, composite cathode (LSCF/CGO 50/50 wt%) was deposited by screen printing on a 1,5 mm thick and dense CGO ceramic. In addition, a dense thin film of LSCF with a thickness of about 0,1 ”m was spin-coated between the cathode and the electrolyte to improve the interface. At 600°C the measured resistance of the cathode was 0,13 Ω for 1 cmÂČ : this value is similar to the results found in the state of the art. An aging study of the cathode and the electrolyte was carried out at 600 °C for 1000 h in air : the resistance of the cathode increased of 32%. This may be related to the different values of the thermal expansion coefficients of the cathode and electrolyte materials.L'Ă©nergie produite par des matiĂšres fossiles, pĂ©trole et charbon, va se rarĂ©fier de maniĂšre inĂ©luctable et couter de plus en plus cher Ă  moyen terme. Pour pallier Ă  la fin des matiĂšres fossiles, le dĂ©veloppement d'Ă©nergies alternatives est indispensable. Parmi celles-ci, la production d'Ă©lectricitĂ© et de chaleur Ă  partir d'hydrogĂšne commence Ă  se dĂ©velopper grĂące aux piles Ă  combustible (PAC) depuis les trĂšs faibles puissances (des microwatts pour alimenter les capteurs) jusqu'aux fortes puissances (des MĂ©gawatts pour l'industrie) en passant par des puissances moyennes (des kilowatts pour le rĂ©sidentiel). Une PAC est constituĂ©e de 3 Ă©lĂ©ments : 2 Ă©lectrodes (anode et cathode) sĂ©parĂ©es par un Ă©lectrolyte. Dans cette thĂšse, ces 3 Ă©lĂ©ments sont constituĂ©s d'oxydes solides et la pile est appelĂ©e SOFC (Solid Oxide Fuel Cell). Les piles SOFC actuellement commercialisĂ©es fonctionnent Ă  de trĂšs hautes tempĂ©ratures, typiquement supĂ©rieures Ă  800°C. L'objectif du travail a Ă©tĂ© d'Ă©laborer des oxydes pour diminuer cette tempĂ©rature vers 600°C ce qui permet d'utiliser de l'acier pour contenir ces piles. Pour que la pile SOFC fonctionne Ă  cette tempĂ©rature, il est impĂ©ratif de diminuer la rĂ©sistance Ă©lectrique des 2 Ă©lectrodes et de l'Ă©lectrolyte de maniĂšre Ă  rĂ©cupĂ©rer une tension Ă©lectrique continue maximale aux bornes de la pile et aussi Ă  faire passer un courant Ă©lectrique Ă©levĂ© dans celle-ci. La cathode, en contact avec l'oxygĂšne de l'air, est l'Ă©lĂ©ment le plus critique Ă  optimiser. Nous avons choisi comme matĂ©riau de cathode un matĂ©riau dĂ©jĂ  Ă©tudiĂ©, La₀.₆Sr₀.₄Co₀.₈Fe₀.₂O₃ (LSCF) et comme Ă©lectrolyte Ce₀.₉Gd₀.₁O₂ (CGO) connu comme performant en dessous de 650 °C. Nous avons Ă©laborĂ© ces matĂ©riaux par une mĂ©thode de chimie douce, la mĂ©thode sol-gel PĂ©chini, et caractĂ©risĂ© ceuxi-ci par diffraction de rayons X et microscopie Ă©lectronique Ă  balayage. Une part importante du travail a Ă©tĂ© la caractĂ©risation Ă©lectrique Ă  l'aide de mesures d'impĂ©dance complexe dans une large gamme de frĂ©quence (0,05 Hz Ă  2 MHz) et de tempĂ©rature (300°C Ă  700 °C). Le meilleur rĂ©sultat a Ă©tĂ© obtenu avec une cathode composite poreuse d'Ă©paisseur 40 ”m constituĂ©e Ă  masses Ă©gales de LSCF et de CGO dĂ©posĂ©e par sĂ©rigraphie sur une cĂ©ramique dense de CGO d'Ă©paisseur 1,5 mm. De plus, un film mince dense de LSCF d'Ă©paisseur 0,1 ”m environ a Ă©tĂ© dĂ©posĂ© par centrifugation pour amĂ©liorer l'interface entre la cathode et l'Ă©lectrolyte. À 600 °C la rĂ©sistance de cette cathode a Ă©tĂ© mesurĂ©e Ă  0,13 Ω pour 1 cmÂČ de cathode : cette valeur est Ă  l'Ă©tat de l'art. Une Ă©tude du vieillissement de cette cathode et de l'Ă©lectrolyte a Ă©tĂ© effectuĂ©e Ă  600 °C pendant 1000 h en continu sous air : cela s'est traduit par une augmentation de la rĂ©sistance de la cathode de 32%. Ceci peut ĂȘtre liĂ© Ă  la diffĂ©rence de valeurs des coefficients d'expansion thermique des matĂ©riaux de cathode et d'Ă©lectrolyte
    corecore