41 research outputs found

    Beyond the tumour microenvironment

    Get PDF
    In contrast to the once dominant tumour-centric view of cancer, increasing attention is now being paid to the tumour microenvironment (TME), generally understood as the elements spatially located in the vicinity of the tumour. Thinking in terms of TME has proven extremely useful, in particular because it has helped identify and comprehend the role of nongenetic and noncell-intrinsic factors in cancer development. Yet some current approaches have led to a TME-centric view, which is no less problematic than the former tumour-centric vision of cancer, insofar as it tends to overlook the role of components located beyond the TME, in the 'tumour organismal environment' (TOE). In this minireview, we highlight the explanatory and therapeutic shortcomings of the TME-centric view and insist on the crucial importance of the TOE in cancer progression

    The Multiple Layers of the Tumor Environment

    Get PDF
    The notion of tumor microenvironment (TME) has been brought to the forefront of recent scientific literature on cancer. However, there is no consensus on how to define and spatially delineate the TME. We propose that the time is ripe to go beyond an all-encompassing list of the components of the TME, and to construct a multilayered view of cancer. We distinguish six layers of environmental interactions with the tumor and show that they are associated with distinct mechanisms, and ultimately with distinct therapeutic approaches

    Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction

    Get PDF
    Acknowledgments This work was supported by a Diabetes UK project grant to Dr M. Delibegović (BDARD08/0003597), Tenovus Scotland grant to Dr. M. Delibegovic and Dr. A. Agouni and travel grants from the Physiological Society and Company of Biologists to Dr. A. Agouni. Dr Delibegovic is also funded by an RCUK Fellowship, British Heart Foundation, EFSD/Lilly diabetes programme grant and the Royal Society. Dr Agouni is funded by the Royal Society and the Physiological Society. This work is supported by the INSERM and CHU of Angers. The authors are thankful to the functional imaging center of Angers (CIFAB) for the use of echocardiography.Peer reviewedPostprin

    Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity

    Get PDF
    Aims: Obesity is a primary contributor to acquired insulin resistance leading to the development of type 2 diabetes and cardiovascular alterations. The carnitine derivate, propionyl-L-carnitine (PLC), plays a key role in energy control. Our aim was to evaluate metabolic and cardiovascular effects of PLC in diet-induced obese mice. Methods: C57BL/6 mice were fed a high-fat diet for 9 weeks and then divided into two groups, receiving either free- (vehicle-HF) or PLC-supplemented water (200 mg/kg/day) during 4 additional weeks. Standard diet-fed animals were used as lean controls (vehicle-ST). Body weight and food intake were monitored. Glucose and insulin tolerance tests were assessed, as well as the HOMAIR, the serum lipid profile, the hepatic and muscular mitochondrial activity and the tissue nitric oxide (NO) liberation. Systolic blood pressure, cardiac and endothelial functions were also evaluated. Results: Vehicle-HF displayed a greater increase of body weight compared to vehicle-ST that was completely reversed by PLC treatment without affecting food intake. PLC improved the insulin-resistant state and reversed the increased total cholesterol but not the increase in free fatty acid, triglyceride and HDL/LDL ratio induced by high-fat diet. Vehicle-HF exhibited a reduced cardiac output/body weight ratio, endothelial dysfunction and tissue decrease of NO production, all of them being improved by PLC treatment. Finally, the decrease of hepatic mitochondrial activity by high-fat diet was reversed by PLC. Conclusions: Oral administration of PLC improves the insulin-resistant state developed by obese animals and decreases the cardiovascular risk associated to this metabolic alteration probably via correction of mitochondrial function

    Asymmetric dimethylarginine positively modulates calcium-sensing receptor signalling to promote lipid accumulation

    Get PDF
    Asymmetric dimethylarginine (ADMA) is generated through the irreversible methylation of arginine residues. It is an independent risk factor for cardiovascular disease, currently thought to be due to its ability to act as a competitive inhibitor of the nitric oxide (NO) synthase enzymes. Plasma ADMA concentrations increase with obesity and fall following weight loss; however, it is unknown whether they play an active role in adipose pathology. Here, we demonstrate that ADMA drives lipid accumulation through a newly identified NO-independent pathway via the amino-acid sensitive calcium-sensing receptor (CaSR). ADMA treatment of 3T3-L1 and HepG2 cells upregulates a suite of lipogenic genes with an associated increase in triglyceride content. Pharmacological activation of CaSR mimics ADMA while negative modulation of CaSR inhibits ADMA driven lipid accumulation. Further investigation using CaSR overexpressing HEK293 cells demonstrated that ADMA potentiates CaSR signalling via Gq intracellular Ca2+ mobilisation. This study identifies a signalling mechanism for ADMA as an endogenous ligand of the G protein-coupled receptor CaSR that potentially contributes to the impact of ADMA in cardiometabolic disease

    Dimethylarginine dimethylaminohydrolase-2 deficiency promotes vascular regeneration and attenuates pathological angiogenesis

    Get PDF
    AbstractIschemia-induced angiogenesis is critical for tissue repair, but aberrant neovascularization in the retina causes severe sight impairment. Nitric oxide (NO) has been implicated in neovascular eye disease because of its pro-angiogenic properties in the retina. Nitric oxide production is inhibited endogenously by asymmetric dimethylarginines (ADMA and L-NMMA) which are metabolized by dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2. The aim of this study was to determine the roles of DDAH1, DDAH2, ADMA and L-NMMA in retinal ischemia-induced angiogenesis. First, DDAH1, DDAH2, ADMA and L-NMMA levels were determined in adult C57BL/6J mice. The results obtained revealed that DDAH1 was twofold increased in the retina compared to the brain and the choroid. DDAH2 expression was approximately 150 fold greater in retinal and 70 fold greater in choroidal tissue compared to brain tissue suggesting an important tissue-specific role for DDAH2 in the retina and choroid. ADMA and L-NMMA levels were similar in the retina and choroid under physiological conditions. Next, characterization of DDAH1+/− and DDAH2−/− deficient mice by in vivo fluorescein angiography, immunohistochemistry and electroretinography revealed normal neurovascular function compared with wildtype control mice. Finally, DDAH1+/− and DDAH2−/− deficient mice were studied in the oxygen-induced retinopathy (OIR) model, a model used to emulate retinal ischemia and neovascularization, and VEGF and ADMA levels were quantified by ELISA and liquid chromatography tandem mass spectrometry. In the OIR model, DDAH1+/− exhibited a similar phenotype compared to wildtype controls. DDAH2 deficiency, in contrast, resulted in elevated retinal ADMA which was associated with attenuated aberrant angiogenesis and improved vascular regeneration in a VEGF independent manner. Taken together this study suggests, that in retinal ischemia, DDAH2 deficiency elevates ADMA, promotes vascular regeneration and protects against aberrant angiogenesis. Therapeutic inhibition of DDAH2 may therefore offer a potential therapeutic strategy to protect sight by promoting retinal vascular regeneration and preventing pathological angiogenesis

    A New NO-Releasing Nanoformulation for the Treatment of Pulmonary Arterial Hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a chronicand progressive disease which continues to carry an unacceptablyhigh mortality and morbidity. The nitric oxide (NO) pathwayhas been implicated in the pathophysiology and progressionof the disease. Its extremely short half-life and systemiceffects have hampered the clinical use of NO in PAH. In anattempt to circumvent these major limitations, we have developeda new NO-nanomedicine formulation. The formulationwas based on hydrogel-like polymeric composite NO-releasingnanoparticles (NO-RP). The kinetics of NO release fromthe NO-RP showed a peak at about 120 min followed by asustained release for over 8 h. The NO-RP did not affect theviability or inflammation responses of endothelial cells. TheNO-RP produced concentration-dependent relaxations of pulmonaryarteries in mice with PAH induced by hypoxia. Inconclusion, NO-RP drugs could considerably enhance thetherapeutic potential of NO therapy for PAH

    Tipifarnib prevents development of hypoxia-induced pulmonary hypertension

    Get PDF
    Aims. RhoB plays a key role in the pathogenesis of hypoxia - induced pulmonary hypertension. Farne sylated RhoB promotes growth responses in cancer cells and we investigated whether inhibition of protein farnesylation will have a protective effect. Methods and Results. The analysis of l ung tissues from rodent models and pulmonary hypertensive patients showed increased levels of protein farnesylation. Oral farnesyltransferase inhibitor tipifarnib prevented development of hypoxia - induced pulmonary hypertension in mice. Tipifarnib reduced hypoxia - induced vascular cell proliferation, increased endothelium - dependent vasodilatation and reduced vasoconstriction of intrapulmonary arteries without affecting cell viability. Protective effects of tipifarnib were associated with inhibition of Ras and RhoB, actin depolymerisation and increased eNOS expression in vi tro and in vivo . Farnesylated - only RhoB (F - RhoB) increased proliferative responses in cultured pulmonary vascular cells, mimicking the effects of hypoxia, while both geranylgeranylated - only RhoB (GG - RhoB) and tipifarnib had an inhibitory effect. Label - fre e proteomics linked F - RhoB with cell survival, activation of cell cycle and mitochondrial biogenesis. Hypoxia increased and tipifarnib reduced the levels of F - RhoB - regulated proteins in the lung, reinforcing the importance of RhoB as a signalling mediator. Unlike simvastatin, tipifarnib did not increase the expression levels of Rho proteins. Conclusions. Our study demonstrates the importance of protein farnesylation in pulmonary vascular remodeling and provides a rationale for selective targeting of this pa thway in pulmonary hypertension

    A New NO-Releasing Nanoformulation for the Treatment of Pulmonary Arterial Hypertension

    Get PDF
    Copyright The Author(s) 2016. This article is published with open access at Springerlink.com. Open Access - This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were madePulmonary arterial hypertension (PAH) is a chronic and progressive disease which continues to carry an unacceptably high mortality and morbidity. The nitric oxide (NO) pathway has been implicated in the pathophysiology and progression of the disease. Its extremely short half-life and systemic effects have hampered the clinical use of NO in PAH. In an attempt to circumvent these major limitations, we have developed a new NO-nanomedicine formulation. The formulation was based on hydrogel-like polymeric composite NO-releasing nanoparticles (NO-RP). The kinetics of NO release from the NO-RP showed a peak at about 120 min followed by a sustained release for over 8 h. The NO-RP did not affect the viability or inflammation responses of endothelial cells. The NO-RP produced concentration-dependent relaxations of pulmonary arteries in mice with PAH induced by hypoxia. In conclusion, NO-RP drugs could considerably enhance the therapeutic potential of NO therapy for PAH.Peer reviewedFinal Published versio
    corecore