136 research outputs found

    Aerodynamic shape optimization of arbitrary hypersonic vehicles

    Get PDF
    A new method was developed to optimize, in terms of aerodynamic wave drag minimization, arbitrary (nonaxisymmetric) hypersonic vehicles in modified Newtonian flow, while maintaining the initial volume and length of the vehicle. This new method uses either a surface fitted Fourier series to represent the vehicle's geometry or an independent point motion algorithm. In either case, the coefficients of the Fourier series or the spatial locations of the points defining each cross section were varied and a numerical optimization algorithm based on a quasi-Newton gradient search concept was used to determine the new optimal configuration. Results indicate a significant decrease in aerodynamic wave drag for simple and complex geometries at relatively low CPU costs. In the case of a cone, the results agreed well with known analytical optimum ogive shapes. The procedure is capable of accepting more complex flow field analysis codes

    Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Get PDF
    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines

    Electromagnetic Field Effects in Semiconductor Crystal Growth

    Get PDF
    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed

    Convergence rate enhancement of navier-stokes codes on clustered grids

    Get PDF
    Our Sensitivity-Based Minimal Residual (SBMR) method which is based on our earlier Distributed Minimal Residual (DMR) method allows each component of the solution vector in a system of equations to have its own convergence speed. Our global SBMR method was found to consistently outperform the DMR method while requiring considerably less computer memory. Recently, we have developed and tested a new Line SBMR or LSBMR method and a Time-Step-Scaling (TSS) method that are even more robust and computationally efficient than our global SBMR method, especially on highly clustered computational grids in laminar and turbulent flow computations

    Three-dimensional solidification and melting using magnetic field control

    Get PDF
    A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields

    A direct approach to finding unknown boundary conditions in steady heat conduction

    Get PDF
    The capability of the boundary element method (BEM) in determining thermal boundary conditions on surfaces of a conducting solid where such quantities are unknown was demonstrated. The method uses a non-iterative direct approach in solving what is usually called the inverse heat conduction problem (IHCP). Given any over-specified thermal boundary conditions such as a combination of temperature and heat flux on a surface where such data is readily available, the algorithm computes the temperature field within the object and any unknown thermal boundary conditions on surfaces where thermal boundary values are unavailable. A two-dimensional, steady-state BEM program was developed and was tested on several simple geometries where the analytic solution was known. Results obtained with the BEM were in excellent agreement with the analytic values. The algorithm is highly flexible in treating complex geometries, mixed thermal boundary conditions, and temperature-dependent material properties and is presently being extended to three-dimensional and unsteady heat conduction problems. The accuracy and reliability of this technique was very good but tended to deteriorate when the known surface conditions were only slightly over-specified and far from the inaccessible surface

    Aerodynamic Shape Multi-Objective Optimization for SAE Aero Design Competition Aircraft

    Get PDF
    The SAE Regular Class Aero Design Competition requires students to design a radio-controlled aircraft with limits to the aircraft power consumption, take-off distance, and wingspan, while maximizing the amount of payload it can carry. As a result, the aircraft should be designed subject to these simultaneous and contradicting objectives: 1) minimize the aerodynamic drag force, 2) minimize the aerodynamic pitching moment, and 3) maximize the aerodynamic lift force. In this study, we optimized the geometric design variables of a biplane configuration using 3D aerodynamic analysis using the ANSYS Fluent. Coefficients of lift, drag, and pitching moment were determined from the completed 3D CFD simulations. Extracted coefficients were used in modeFRONTIER multi-objective optimization software to find a set of non-dominated (Pareto-optimal or best trade-off) optimized 3D aircraft shapes from which the winner was selected based to the desired plane performance

    Reliability enhancement of Navier-Stokes codes through convergence acceleration

    Get PDF
    Methods for enhancing the reliability of Navier-Stokes computer codes through improving convergence characteristics are presented. The improving of these characteristics decreases the likelihood of code unreliability and user interventions in a design environment. The problem referred to as a 'stiffness' in the governing equations for propulsion-related flowfields is investigated, particularly in regard to common sources of equation stiffness that lead to convergence degradation of CFD algorithms. Von Neumann stability theory is employed as a tool to study the convergence difficulties involved. Based on the stability results, improved algorithms are devised to ensure efficient convergence in different situations. A number of test cases are considered to confirm a correlation between stability theory and numerical convergence. The examples of turbulent and reacting flow are presented, and a generalized form of the preconditioning matrix is derived to handle these problems, i.e., the problems involving additional differential equations for describing the transport of turbulent kinetic energy, dissipation rate and chemical species. Algorithms for unsteady computations are considered. The extension of the preconditioning techniques and algorithms derived for Navier-Stokes computations to three-dimensional flow problems is discussed. New methods to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential equtions are developed, with a special emphasis on the acceleration of convergence on highly clustered grids

    Algorithms for design optimization of chemistry of hard magnetic alloys using experimental data

    Get PDF
    A multi-dimensional random number generation algorithm was used to distribute chemical concentrations of each of the alloying elements in the candidate alloys as uniformly as possible while maintaining the prescribed bounds on the minimum and maximum allowable values for the concentration of each of the alloying elements. The generated candidate alloy compositions were then examined for phase equilibria and associated magnetic properties using a thermodynamic database in the desired temperature range. These initial candidate alloys were manufactured, synthesized and tested for desired properties. Then, the experimentally obtained values of the properties were fitted with a multi-dimensional response surface. The desired properties were treated as objectives and were extremized simultaneously by utilizing a multi-objective optimization algorithm that optimized the concentrations of each of the alloying elements. This task was also performed by another conceptually different response surface and optimization algorithm for double-checking the results. A few of the best predicted Pareto optimal alloy compositions were then manufactured, synthesized and tested to evaluate their macroscopic properties. Several of these Pareto optimized alloys outperformed most of the candidate alloys on most of the objectives. This proves the efficacy of the combined meta-modeling and experimental approach in design optimization of the alloys. A sensitivity analysis of each of the alloying elements was also performed to determine which of the alloying elements contributes the least to the desired macroscopic properties of the alloy. These elements can then be replaced with other candidate alloying elements such as not-so-rare earth elements
    • …
    corecore