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Highlights 

• Design of experiments algorithms created initial concentrations of alloying elements 

• Multi-dimensional hyper-surfaces were used to fit experimental data 

• Multi-objective optimization was used to find Pareto optimal concentrations 

• Statistical measures determined the relative influence of individual elements 
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Abstract 

A multi-dimensional random number generation algorithm was used to distribute 

chemical concentrations of each of the alloying elements in the candidate alloys as 

uniformly as possible while maintaining the prescribed bounds on the minimum and 

maximum allowable values for the concentration of each of the alloying elements. The 

generated candidate alloy compositions were then examined for phase equilibria and 

associated magnetic properties using a thermodynamic database in the desired 

temperature range. These initial candidate alloys were manufactured, synthesized and 

tested for desired properties. Then, the experimentally obtained values of the properties 

were fitted with a multi-dimensional response surface. The desired properties were 

treated as objectives and were extremized simultaneously by utilizing a multi-objective 

optimization algorithm that optimized the concentrations of each of the alloying 

elements. This task was also performed by another conceptually different response 

surface and optimization algorithm for double-checking the results. A few of the best 

predicted Pareto optimal alloy compositions were then manufactured, synthesized and 

tested to evaluate their macroscopic properties. Several of these Pareto optimized 

alloys outperformed most of the candidate alloys on most of the objectives. This proves 

the efficacy of the combined meta-modeling and experimental approach in design 

optimization of the alloys. A sensitivity analysis of each of the alloying elements was 

also performed to determine which of the alloying elements contributes the least to the 

desired macroscopic properties of the alloy. These elements can then be replaced with 

other candidate alloying elements such as not-so-rare earth elements. 
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1. Introduction 

Rare Earth Element (REE) based magnets have a very high magnetic energy density 

((BH)max). This means that it is possible to synthesize smaller magnets while 

maintaining the superior magnetic properties. These magnets also have higher 

coercivity (Hc), making it difficult to demagnetize under external magnetic fields. 

Neodymium magnets are the strongest available magnets in this family. However, Nd-

Fe-B (Neodymium-Iron-Boron) performs the best up to 150 °C. From 150 °C to 350 °C, 

Sm-Co (Samarium-Cobalt) magnets are used. These magnets usually need a protective 

coating in order to prevent corrosion. REE-based magnetic materials are essential in 

electric cars, in wind turbine electric generators, and any high-efficiency electric devices 

requiring magnetic fields. Hence, REEs are classified as strategic materials determining 

which national economies will survive and prosper in the post-combustion-engine era. 

Most of the REEs used for synthesizing these magnets are located in China and the 

Russian federation. Due to depleting resources and stringent trade rules from the 

suppliers, it is important to look at other options to synthesize these magnets [1]. 

AlNiCo magnets [2] are permanent magnetic alloys based on the Fe-Co-Ni-Al system 

without REEs. AlNiCo magnets have high Br values, comparable to REE magnets. 

AlNiCo magnets have lower Hc values and can be demagnetized in the presence of an 

external magnetic field. A high Br value can be properly exploited to cast this magnet in 

complex shapes, while magnetizing it in the production heat treatment stages. AlNiCo 

magnets possess excellent corrosion resistance and high-temperature stability. These 

are the only magnets that are stable up to 800 °C ( Curie temperature). Above-
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mentioned properties have been successfully exploited by researchers in the past and 

are a perfect choice for military and automotive sensor applications. Thus, any 

improvement in the existing properties of AlNiCo alloys will be helpful in covering the 

gap between the magnetic properties achieved by AlNiCo and REE based magnets. 

In the present research work, a novel approach is presented for creating computational 

tools for design and multi-objective optimization of permanent magnetic alloys of AlNiCo 

type. This approach combines a number of numerical design optimization algorithms 

with several concepts from artificial intelligence and experimentally evaluated desired 

properties of an affordable set of candidate alloys. These alloys were further screened 

by various statistical tools in order to determine any specific trend in the data. This 

information will be helpful to the research community in developing a material 

knowledge base for the design of new alloys for targeted properties. 

At present, researchers around the globe are working on designing magnetic alloys that 

will be able to cover the gap between the properties achieved by AlNiCo magnets and 

the rare-earth magnets, basically by adding a small amount of those rare-earth 

elements that are less critical in the sense of supply [3,4]. Sellmyer et al. [5] worked on 

a few rare-earth free alloys. Zhou et al. [6] manufactured a few commercial AlNiCo 

alloys to demonstrate the scope of improvement in this field. The difference between the 

theoretically calculated and the experimentally measured properties was quite large for 

both ((BH)max) and Hc. Thus, random experimentation may prove to be both expensive 

and time-consuming. 

Designing a new alloy system is a challenging task mainly due to a limited experimental 

database. In order to develop a reliable knowledge base [7] for design of new alloys, 

one needs to focus on determining various correlations (composition-property, property-
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property, and composition-composition) from the available databases (simulated and 

experimental). This information can be coupled with the theoretical knowledge 

(atomistic and continuum based theories) to develop the knowledge base. Integrated 

Computational Materials Engineering (ICME) approach [8] and materials genome 

initiative highlighted the importance and growing application of computational tools in 

the design of new alloys. In recent years, various data-driven techniques combined with 

evolutionary approaches [9] have been successfully implemented in direct alloy design 

[9-14] and inverse alloy design [15] and in improving thermodynamic databases such as 

Thermocalc [16] for alloy development. Jha et al. [12,13] demonstrated the scope of use 

of these databases for designing Ni-based superalloy and Rettig et al. [14] performed a 

few experiments to confirm his findings. Data mining approaches such as Principal 

Component Analysis (PCA) and Partial Least Square (PLS) regression have been 

successfully used in designing new alloys [17,18]. Additionally, various machine-

learning algorithms have been used to address a vast range of problems in materials 

design [19,20].These applications demonstrate the efficacy of application of 

computational tools for materials design. 

Mishima in Japan [2] first discovered AlNiCo magnets in 1931. Initially, it belonged to 

the Fe-Co-Ni-Al quaternary system. Magnetic properties in these magnets were 

attributed to shape anisotropy in the two-phase system, the phases being rod like Fe-Co 

rich ferromagnetic phase α1 and Ni-Al rich phase α2 (Body Centered Cubic (BCC)). It 

was later observed that shape anisotropy is a result of a metallurgical phenomenon 

popularly known as spinodal decomposition in the temperature range of 800-850 ºC. 

Shape anisotropy results in periodic distribution of phase α1 in the matrix of α2 phase. 

The axis of elongation of α1 rods are parallel to <100> direction. Phases α1 and α2 are 

stable up to 850 ºC, that is, just below the Curie temperature, which is about 860 ºC for 
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AlNiCo alloys. Above 850 ºC, Face Centered Cubic (FCC) γ phase begins to appear 

and it was observed in a few samples [21]. Gamma phase must be avoided, as it is 

detrimental for magnetic properties. Various attempts (such as modification of heat 

treatment protocol and addition of various alloying elements) have been made to 

stabilize the magnetic α1 and α2 phases and simultaneously eliminate or reduce the 

amount of γ phase. In the past few decades, (especially after the discovery of powerful 

REE-based magnets in 1980’s), there has been limited research on AlNiCo magnets. 

Recent rise in prices of rare earth elements led to the search for rare-earth free 

magnets. In recent years, AlNiCo magnets are again a popular choice for research 

mainly due to their proven high-temperature stability and related properties at an 

affordable cost [22]. 

Currently, AlNiCo alloys are not limited to quaternary systems and may contain eight or 

more elements [2,10,11,13,23]. In this work, we selected eight elements namely Iron 

(Fe), Cobalt (Co), Nickel (Ni), Aluminum (Al), Titanium (Ti), Hafnium (Hf), Copper (Cu) 

and Niobium (Nb). Variable bounds of these elements have been tabulated in Table 1. 

From both experimental as well as the modeling point of view, it will be helpful to 

discuss the role of these alloying elements. This information can be utilized to select 

meta-model for targeted properties. This will be helpful in developing a knowledge base 

for discovery of new materials and/or improving properties of existing materials. 

As shown in Figure 1, magnetic energy density ((BH)max) is defined as the area of the 

largest rectangle that can be inscribed in the second quadrant of B-H normal curve [24]. 

Since, Hc and Br are conflicting; one has to sacrifice on one of these properties to 

improve the other property. Therefore, in order to increase (BH)max, one needs to 

optimize Hc and Br. 
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Fig. 1 

B-H curve: shows relation between Hc, Br and ((BH)max) [24]. 

 

The following text will provide the reader with a brief idea regarding the role of various 

alloying elements and its effect on Hc and Br [21]: 

Cobalt: It is a γ stabilizer. A solutionization anneal is needed to homogenize it to a 

single α phase. Cobalt increases coercivity and Curie temperature. 

Nickel: It is also a γ stabilizer. Hence, solutionization anneal temperature needs to be 

increased in order to homogenize it to a single α phase. Nickel increases Hc (less 

than Cobalt) while decreases Br. 

Aluminum: It is an α stabilizer. It will be helpful in reducing the solutionization anneal 

temperature. Aluminum is expected to affect Hc positively. 
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Copper: It is an α stabilizer. Research shows that Copper affects Hc and Br positively 

and increases it. In AlNiCo 8 and AlNiCo 9 alloys, Cu precipitates out of the α2 

phases into particles and is responsible for the magnetic separation between α1 and 

α2 phases. An increase in phase separation leads to an increase in Hc. 

Titanium: It is an α stabilizer and one of the most reactive elements. It reacts with 

impurities such as C, S, and N and purifies the magnet by forming precipitates with 

these elements. It helps in grain refining but it is detrimental for columnar grain 

growth. S and Te additions can help in regaining grain growth capabilities. Majority 

of grains are aligned perpendicular to the chill plate due to columnar grain growth 

and large shape anisotropy can be achieved if spinodal decomposition occurs in this 

direction. Titanium increases Hc at the expense of Br [25]. 

Niobium: It is an α stabilizer. It forms precipitate with Carbon. Carbon is a strong γ 

stabilizer and needs to be eliminated. Like Ti, Nb also inhibits columnar grain 

growth. Nb increases Hc, at the expense of Br [26]. 

Hafnium: It is used for enhancing high-temperature properties. It precipitates at the 

grain boundary and helps in improving creep properties. Recent studies related to 

Co-Hf magnets [5], motivated us to use Hf in this work. 

 

From the above literature, the reader can understand the role that spinodal refining 

plays in improvement of properties of these magnets. Several research groups have 

developed their theories for improved properties of these magnets. (BH)max is 

dependent on both Br and Hc and it is proportional to Hc at low Hc. For example, a 

recent study on nanostructured magnetic material suggests that it is possible to achieve 

a very high magnetic energy product for fine wires of the order of 10 nm [21]. 

Directionally aligned rods obtained because of shape anisotropy due to spinodal 
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decomposition in AlNiCo alloys were approximated as such fine wires. As per this 

theory, the upper bound of (BH)max was theoretically calculated and was found to be 

an order of magnitude greater than the best commercially available AlNiCo alloy. 

According to this theory, (BH)max is directly proportional to Mr (remanence 

magnetization), while Mr is directly proportional to Ms (saturation magnetization). Thus, 

the lower bound of (BH)max is proportional to Hc, and the upper bound of (BH)max has 

been reported to be proportional to Ms.  

It must be noted that Hc is an extrinsic property, while Ms is an intrinsic property of the 

magnet. Thus, experimentalists have to be extremely careful while preparing specimens 

and designing thermomagnetic treatment protocols. They also must have access to 

advanced diagnostic tools required for analysis at nanometer scale.  

Two recent papers [6, 22] reported the importance of copper rich precipitates between 

adjacent α1 phases and their importance in improvement of magnetic properties for 

AlNiCo 8 and 9 grade alloys.  

 

2. Algorithms for multi-objective design optimization of alloys 

We used a set of computational tools to develop a novel approach for design and 

optimization of high-temperature, high-intensity magnetic alloys. The steps involved in 

the proposed approach can be listed as follows: 

1. Initial dataset: From our own expertise and the open literature, we defined the 

variable bounds of eight alloying elements that are to be used for the 

manufacture of magnets. One of the best-known quasi-random number 

generators, Sobol’s algorithm [27], was used to generate chemical 

concentrations for an initial set of 80 candidate alloys (Table 1 and Table 2). 

These alloys were screened on the basis of limited knowledge of phase 
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equilibrium and magnetic properties from a commercial thermodynamic 

database, Factsage [28]. 

2. Manufacture and testing: These alloys were synthesized and tested for various 

properties of interest as shown in Table 3. A summary of the manufacture and 

testing protocol in listed here with more information presented in [29, 30]. 

a. Manufacture: Bulk samples were cast in a water cooled copper hearth. 

The specimens were re-melted at least three times to ensure 

homogenization. 

b. Thermo-magnetic treatment: Cast samples were solutionized at 1250 0C 

and then thermo-magnetically treated at 800 0C for 10 minutes. Magnetic 

field (3T) was applied in the direction of cylindrical axis. 

c. Hysteresis measurements: They were performed by Quantum Design 

superconducting quantum interference device (SQUID) magnetometer, 

where magnetic field varied between -3T to +3T at room temperature. 

Br, Hc and (BH)max were obtained from hysteresis loops obtained in this 

step. 

d. Structural and compositional properties were analyzed by: 

i. Transmission electron microscope (TEM). 

ii. Energy-dispersive x-ray spectroscopy (EDS) analysis. 

3. Response surface generation: This data was used to link alloy composition to 

desired properties by developing response surfaces for those specific 

properties (listed in Table 3). A commercial optimization package, 

modeFRONTIER [31] was used for this purpose. Response surfaces were 
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tested on various accuracy measures and the most accurate one was chosen 

for further study. Various approaches were used to develop response surfaces. 

These include Radial basis functions (RBF), Kriging, Anisotropic Kriging, and 

Evolutionary Design. 

4. Multi-objective optimization: Response surfaces selected above were used to 

extremize various properties as per the objectives specified in Table 3. It was 

observed that most of the optimization tasks yielded alloys with a similar 

chemical composition for a set of objectives. Hence, several optimization runs 

were performed to get a diverse pool of results. Various optimization algorithms 

were used for this purpose. It includes Non-dominated Sorting Genetic 

Algorithm II (NSGA2), Multi-Objective Particle Swarm Optimization (MOPSO), 

Multi-Objective Simulated Annealing (MOSA) and FAST optimizer which uses 

response surface models (meta-models) to speed up the optimization process 

using search algorithms such as NSGA2, MOPSO, MOSA [31]. 

For the purpose of self-evaluation, this work was independently carried out at three 

different places using: 

a. Commercial optimization package, Indirect Optimization based on Self-

Organization (IOSO) algorithm [9]. 

b. Hybrid response surface [32] was used because of its robustness, 

accuracy and computational efficiency. Multi-objective optimization was 

performed by Non-Dominated Sorting Genetic Algorithm (NSGA2) [31]. 

c. Surrogate model selection algorithm [32] was used because of its 

robustness and simplicity. 
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Pareto-optimized predictions from the above optimization packages were merged. From 

this set, we selected a few alloys for further manufacture and testing. 

5. The work has been performed in cycles. Steps 2-5 were repeated until the 

improvements of multiple macroscopic properties of these magnetic alloys 

became negligible. 

6. Sensitivity analysis: Various statistical tools were used to determine 

composition-property relations. This was done in order to find influential alloying 

elements for development of knowledge base. At the same time, the sensitivity 

analysis also helps in finding the least influential alloying elements that could be 

discarded to make way for introduction of affordable and readily available rare-

earth elements. 

This work will help in developing a knowledge base that will be useful to the research 

community in designing new alloys. In data-driven material science, knowledge 

discovery [7] for designing new materials requires: 

a) Data: In this work, our database is a combination of experimentally verified 

data and Pareto-optimized predictions. 

b) Correlations: Various linear and nonlinear correlation, clustering, and a 

principal component analysis tool to discover various trends in the dataset. 

c) Theory: The above information can be coupled with theoretical knowledge 

to motivate the experimentalist to modifying standard manufacturer protocol 

for the design of new alloys. 

 

Table 1: Concentration bounds used for optimization of AlNiCo type alloys 
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Alloys number 1-85 86-143 144-173 

Alloying elements Concentration bounds (wt. percent) 

Cobalt(Co) 24 - 40 24 - 38 22.8 - 39.9 

Nickel (Ni) 13 - 15 13 - 15 12.35 - 15.75 

Aluminum (Al) 7 - 9 7 - 12 6.65 - 12.6 

Titanium (Ti) 0.1 - 8 4 - 11 3.8 - 11.55 

Hafnium (Hf) 0.1 - 8 0.1 - 3 0.095 - 3.15 

Copper (Cu) 0 - 6 0 - 3 0.4 - 5 

Niobium (Nb) 0 - 2 0 - 1 0 - 1.5 

Iron (Fe) Balance to 100 percent 

 

Table 2: Cycle and alloy number 

Cycle 

number 

Number of alloys 

designed 

Best alloy 

1 1-80 #30 

2 81-85 #84 

3 86-90 #86 

4 91-110 #95 

5 111-120 #117 

6 120-138 #124 

7 139-143 #139 

8 144-150 #150 

9 150-160 #157 

10 160-165 #162 
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11 166-173 #169 

 

Table 3: Quantities to be simultaneously extremized using multi-objective optimization 

 Properties Units Objective 

1 Magnetic energy density ((BH)max) kg m-1 s-2 Maximize 

2 Magnetic coercivity (Hc) Oersted Maximize 

3 Magnetic remanence (Br) Tesla Maximize 

4 Saturation magnetization (Ms) Emu/g Maximize 

5 Remanence magnetization (Mr) Emu/g Maximize 

6 (BH)max/mass m-1 s-2 Maximize 

7 Magnetic permeability (µ) kg m A-2 s-2 Maximize 

8 Cost of raw material (cost) $/kg Minimize 

9 Intrinsic coercive field (jHc) A m-1 Maximize 

10 Density(ρ) Kg m-3 Minimize 

 

3. Results 

As discussed in Section 2, we have worked through 11 cycles of design and 

optimization, each of them including its own experimental validation. Table 2 lists the 

Pareto-optimized alloys manufactured in each of the design cycles and the best 

experimentally validated alloy in each cycle. 

Work done in all the cycles is described as follows: 

1. Cycle 1 (Alloys 1-80): Initial alloy compositions were predicted by Sobol’s 

algorithm [27] and the initial set of 80 elements was chosen for manufacture 
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and testing. Thereafter, we proceeded further with design and optimization with 

the goal of improved results. 

2. Cycle 2 (Alloys 81-85): One of the predicted alloys (alloy 84) outperformed the 

initial set of alloys as well as the other Pareto-optimized predictions. This 

demonstrates the efficacy of the current approach and we moved forward with 

the objective of further improvements. The variable bounds were updated (for 

alloy 86-90) and listed in Table 1. 

3. Cycle 3 (Alloys 86-90): Alloy 86 was the best candidate in this set. Measured 

properties of the new set (alloy 86-90) were in the vicinity of the previous pool 

of alloys. One of the reasons for this can be non-uniform distribution of alloying 

elements in the variable space. Since there was no significant improvement; 

the next set of alloys was predicted by Sobol’s algorithm so as to provide 

additional support points in the variable space for development of response 

surfaces with improved accuracy. 

4. Cycle 4 (Alloys 91-110): Alloy 95 was the best performer in this group. Our 

approach of providing more support points for the response surfaces proved 

helpful in the improvement of properties. Alloy 95 had an Hc of 980 Oe (against 

750 Oe for the previous best alloy 84).  

5. Cycle 5 (Alloys 111-120): Alloy 117 is the best alloy in this dataset in terms of 

((BH)max). There was a significant improvement in the properties of the new 

alloys. Alloy 111 and 114 had an Hc of 1050 Oe while alloy 117 reported 1000 

Oe (against 980 Oe for the previous best alloy 95). This improvement motivated 

us to proceed towards the next cycle of design and optimization task. 
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6. Cycle 6 (Alloys 121-138): Alloy 124 was the best performer in this group. There 

was a significant improvement in both ((BH)max) and Hc. Hence, we moved 

forward towards the next cycle of design and optimization. 

7. Cycle 7 (Alloys 139-143): Alloy 139 was the best performer in this group. Its 

properties were in the vicinity of alloy 124. Since, there was no significant 

improvement in the desired properties, the design and optimization process 

was halted in order to minimize waste of resources and funding. The created a 

need to perform a sensitivity analysis of the variables and associated 

properties.  

Cycles 8-11 (Alloys 144-173): In these cycles, variable bounds were relaxed by 5 

percent, while the methodology remained the same. 

8. Cycle 8 (Alloys 144-150): Alloys predicted by modeFRONTIER. Marginal 

improvement in Hc was observed, but there was no significant improvement in 

other properties. 

9. Cycle 9 (Alloys 151-160): Alloys predicted by Surrogate model selection 

algorithm(SM). There was no significant improvement in any of the properties. 

10. Cycle 10 (Alloys 161-165): Alloys predicted by modeFRONTIER. Marginal 

improvement in Hc was observed, however, there was no significant 

improvement in other properties. 

11. Cycle 11 (Alloys 166-173): Alloys predicted by hybrid response surface and 

modeFRONTIER. Marginal improvement in Hc was observed, but there was still 

no significant improvement in other properties. 
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Figures 2, 3 and 4 show the comparison between various approaches for a set of 

properties. It can be observed that the alloys predicted by meta-modeling and 

optimization dominate the ones predicted by Sobol’s algorithm [27]. One can observe 

significant improvement over the cycles. Experimentally verified Hc values are at par 

with commercial alloys [6]. We expect improvement in (BH)max and Br values in the next 

few cycles. At this point, we have a significant amount of experimentally verified data. 

Hence, we felt the need to perform a sensitivity analysis of the response surfaces and 

look for patterns in the dataset. 

 

 

 

Fig. 2. 

Magnetic energy density vs. magnetic coercivity; comparison of solutions by various 

approaches 
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Fig. 3.  

Magnetic coercivity vs. magnetic remanence, comparison of solutions by various 

approaches 
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Fig. 4.  

Magnetic energy density vs. magnetic remanence, comparison of solutions by various 

approaches 

 

4. Sensitivity analysis 

It was done in order to determine the composition-property relationship. Another 

purpose was to find various trends and patterns within the dataset. Initially, Pearson’s 

linear correlation method was used. It was followed by various approaches to 

determining non-linear trends within a dataset [19]. 

Single Variable Response (SVR) 

This is a methodology that is often applied for qualitative analysis of the training results 

obtained from Evolutionary Neural Network [34] and Bi-Objective Genetic Programming 

[35,12]. In SVR, a trend is created by generating values between zero and one on a 

time scale. The trend line is irregular. Specifically, there are regions of constant values, 
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sharp increases, and sharp decreases in the line. This has been referred to as an input 

signal in the following text. For SVR testing, the input signal (a trend of variation) was 

used for one of the variables while the other variables were kept constant at an average 

value. The various responses were tabulated in Table 4 for each of the models. For the 

responses, the following terminologies were used: 

Dir: This means that the model output increases by increasing the value of an input 

signal and decreases on decreasing the input value. 

Inv: This means that a particular variable increase will cause the property value to 

decrease and vice versa. 

Nil: This means that the model was unable to find any correlation between that 

particular variable and the model output. 

Mix: This means that the model has a different response for a different set of data of 

any particular variable. 

Since, the dataset is quite noisy, the responses were mixed (Table 4). However, a few 

important findings can be listed as follows: 

1)  Copper shows a direct response for Hc and Br. Thus, response surface predictions 

are of comparable accuracy with available results in the open literature as discussed 

in Section 2.1. 

2)  Hafnium shows a direct response for Hcand Br. Further experiments/ data analysis 

are needed before reaching a conclusion regarding the effect of Hf on Hc and Br as it 

has not been previously used in AlNiCo alloys. 

3)  Nickel shows response for (BH)max. 
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These findings are promising as they mimic the findings from the literature. Hence, 

meta-modeling can prove to be an asset for developing alloys in the future. In order to 

proceed further, we need to evaluate our findings by other data-mining techniques. 

 

Table 4: Single variable response (SVR) for various macroscopic properties of AlNiCo 

type alloys 

Objective 

No. 
Properties 

Variable response 

Fe Co Ni Al Ti Hf Cu Nb 

1 
Magnetic energy 

density ((BH)max) 
Nil Nil Mix Nil Nil Nil Nil Nil 

2 
Magnetic coercivity 

(Hc) 
Mix Mix Mix Inv Mix Dir Dir Mix 

3 
Magnetic 

remanence (Br) 
Mix Mix Mix Inv Mix Dir Dir Inv 

4 
Saturation 

magnetization (Ms) 
Dir Inv Dir Mix Inv Dir Mix Mix 

5 
Remanence 

magnetization (Mr) 
Nil Nil Nil Nil Nil Nil Nil Nil 

6 (BH)max/mass Nil Nil Nil Nil Nil Nil Nil Nil 

7 
Magnetic 

permeability (µ) 
Mix Mix Mix Mix Inv Mix Mix Mix 

8 
Cost of raw material 

(cost) 
Inv Inv Inv Dir Dir Dir Inv Dir 
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9 
Intrinsic coercive 

field (jHc) 
Mix Mix Mix Inv Inv Mix Dir Mix 

10 Density(ρ) Mix Dir Mix Inv Inv Mix Mix Dir 

 

Principal Component Analysis (PCA) 

Principal component analysis can be classified as an unsupervised learning machine-

learning algorithm [19,20]. It was performed in order to determine correlations between 

variables and various properties by reducing the dimensionality of the dataset without 

losing much information. PCA uses an orthogonal transformation to convert a set of 

usually correlated variables (or properties) into a set of values of linearly uncorrelated 

variables known as Principal Components (PCs). Hence, each PC is a linear 

combination of all the original descriptors (variables and properties). The first principal 

component (PC1) accounts for maximum variance in the dataset, followed by PC2 and 

so on [7,31]. Thus, it is possible to visualize a high dimensional dataset by choosing first 

two or three PCs [19,20]. It is also used for identifying patterns in data, as patterns may 

be hard to find in high-dimensional data sets. 

PCA was conducted separately for design variables (alloying elements) and targeted 

properties. For design variables, all the eight elements were included for PCA. We have 

8 design variables (alloying elements), thus there will be maximum of 8 PCs. 

For targeted properties, it can be observed that apart from (BH)max/mass, all other 

properties were measured independently. (BH)max/mass was, thus, removed from 

further analysis to reduce the complexity of the problem. We were left with 9 targeted 

properties. Hence, there was a maximum of 9 PCs. Prior to PCA, three important terms 

need to be discussed for better understanding of the analysis results: 
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a) Scree plot: It is a plot between Eigen values and component number. It is an 

important parameter used to select the number of components required to 

represent the complete dataset. Usually, components with eigen values above 

one (1) are chosen for further analysis. It can be seen from the figures in the later 

part that the scree plot usually flattens below eigenvalue 1. This means that the 

later components do not have any significant effect on the dataset. Since each 

successive component accounts for comparatively less variance, the least 

influential components can be ignored from further analysis. 

b) Eigen values: are the variances of the principal components.  PCA was 

conducted on the correlation matrix. Here, the variables were standardized, so 

that each variable has a variance of one, and the total variance is equal to the 

number of variables used in the analysis. Thus, there will be eight PCs for 

elements and nine PCs for properties. The first component will always account 

for the most variance (and hence will have the highest eigenvalue). Next, 

components will account for as much of the left over variance as they can. 

Hence, each successive component will account for comparatively less variance 

(hence less eigenvalues) than the one preceding it.  

c) Component plot: After the required number of components are chosen, these 

components are plotted against each other, while the original variables (or 

properties) are plotted on this reduced space. Orientation of a certain variable (or 

property) on the reduced space determines its contribution towards a certain PC. 

That is, if the variable is positioned along PC1 on the 0-line perpendicular to 

PC2, this variable will have maximum influence on PC1 and minimum influence 
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on PC2. This will be better explained with the corresponding figures in the latter 

part of the text. 

In Figure 19 and 20, alloys were also plotted along with the elements. Here, the alloys 

are clustered by K-means clustering method to classify the alloys into different clusters. 

Alloys that belong to the same cluster have the same symbol. A few of the best alloys 

mentioned in Table 2 are plotted on the figure. In these figures, variables (elements) are 

plotted as arrows. Arrows represent the relative contribution of the original variables to 

the variability along the PCs. In these figures, the longer the arrows, the stronger are 

their contributions. Additionally, an arrow orthogonal to a certain PC has null effect on 

that PC while an arrow that is collinear to a certain PC contribute only to that certain PC. 

We classified the dataset into four sets and performed the PC analysis on individual 

sets in order to extract information from one set and then cross-check it with the findings 

of other sets. In all of these cases, PC1, PC2, and PC3 were able to capture most of the 

variance of the dataset. Dataset was classified as follows: 

a) Experimental: Alloy #1-80 

b) Optimization: Alloy # 81-173 

c) Data categorized based on Multi-Criterion Decision Making (MCDM): 40 

alloys were selected. 

d) Whole dataset: Alloy # 1-173. 

We used a popular statistical software, IBM SPSS [36], and Multivariate Data Analysis 

(MVA) node in optimization package modeFRONTIER [31] for this work. 

a) Experimental: Alloys 1-80 
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These 80 alloys represent the initial set of compositions predicted by Sobol’s algorithm 

[27]. Hence, we did not perform PCA on the elements. Various properties were 

analyzed and reported below. Scree plots were created in order to determine the 

number of effective principal components required to represent the whole dataset. It 

was found that two PCs are able to extract most of the information from the dataset. 

Figure 5 shows the scree plot for the properties, while Figure 6 shows the orientation of 

various properties in the PC space.  

       

Fig. 5. 

Scree plot for PC analysis: Two PC 

components were chosen 

  Fig. 6.  

Orientation of various properties in 

the PCA space 

 

Figure 6 shows that (BH)max, jHc, Hc, Mr and Br have maximum effect on PC1 while cost 

and Ms has maximum effect on PC2. Density and µ have similar effects on both PC. It 

can be seen that Hc and jHc coincide at the same spot thus Hc and jHc seems to be 

dependent on each other. It makes sense, as one is the inverse of the other. Similarly, 

Mr and Br can be clustered together and µ and density can be taken as another cluster. 

This means that properties that form a cluster may affect, or may be dependent on, 

each other. Analysis of other datasets will further clarify these findings. 
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b) Optimization: Alloys 81-173 

In this data, we went for PC analysis for the elements. From scree plot in Figure 7, it 

was found that three PCs are able to extract most of the information from the dataset. 

Figure 7 shows the scree plot for the elements while Figure 8 shows the position of 

various elements in the PC space. 

 

 

Figure 7: Scree plot for PC analysis: 

Three PC components were chosen 

Figure 8: Orientation of various 

elements in the PC space 

 

In Figure 8, one can observe that elements have mixed effect on the three selected 

PCs. Since various optimizers and Sobol’s algorithm have predicted these alloys 

composition, it seems to be properly distributed in the variable space. Hence, such a 

relation can be expected.  

Upon close observation, it can be seen that Cu and Hf are close enough to form a 

cluster. This means that Cu and Hf may affect the properties of the alloy in a similar 

way. From SVR analysis, both Cu and Hf showed a direct response for Hc and Br. Hf 

usually precipitates at the grain boundaries and enhances high temperature properties. 
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However, it has been rarely used in AlNiCo alloys; hence, this finding can be helpful for 

the experimentalist to proceed forward for Hf addition in AlNiCo alloys. This must be 

analyzed further in other datasets before moving for microstructure analysis. Ni and Al 

can also be clustered together and appear to have similar effect. This can be supported 

from the literature, as there exists Ni-Al rich phase in these alloys. 

 

 

Fig. 9. 

Scree plot for PC analysis: Three PC components were chosen 
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Fig. 10.  

Orientation of various properties in the PC space 

 

It was found that three PCs are able to extract most of the information from the dataset. 

Figure 9 shows the scree plot for the elements, while Figure 10 shows the position of 

various properties in the PC space. In Figure 10, Hc and jHc are clustered together. It 

can be seen that Br, Mr, and (BH)max can be clustered as well. Br and Mr were clustered 

in the previous analysis. Hence, these properties may be correlated (or dependent) on 

each other. 

 

c) Data categorized based on Multi-Criterion Decision Making (MCDM): 40 alloys 

were selected 

Due to software limitations, we focused on optimizing (BH)max, Hc and Br only. We left 

the other properties of interest though they are quite important for the magnet. In this 
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part, we selected 40 alloys based on objectives defined in Table 2. We used Multi-

Criterion Decision Making methodology to select these alloys.  

Based on eigen values, three PCs were chosen (Figure 11). Figure 12 shows the 

orientation of various elements on the PC space. Figure 12 supports our finding from 

the previous set regarding Cu and Hf. In this set too, Cu and Hf can be clustered 

together. Similarly, Ni and Al can be clustered together.  

Figure 13 shows scree plot for various properties while Figure 14 shows the orientation 

of these properties in the PC space. In Figure 14, Mr and Br can be clustered and 

hence these properties may be dependent on each other. (BH)max does not seem to be 

part of the cluster anymore, but is close to it. Finally, we can proceed towards analyzing 

the whole dataset. 

 

 

Fig. 11.  

Scree plot for PC analysis: Three PC components were chosen 
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Fig. 12.  

Orientation of various elements in the PC space 

 

 

Fig. 13.  

Scree plot for PC analysis: Three PC components were chosen 
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Fig. 14.  

Orientation of various properties in the PC space 

c) Whole dataset: Alloys 1-173. 

Here, the complete dataset was used for analysis. Figure 15 shows the plot for various 

elements. Based on eigen values, three PCs are able to extract most of the information 

from the dataset.  
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Fig. 15.  

Scree plot for PC analysis: Three PC components were chosen 

 

Figure 16 shows the orientation of various elements in the PC space. Cu and Hf can be 

clustered together (Figure 16). In PC1 vs. PC2 (top corner), Ti can also be clustered 

along with Cu and Hf. Ni and Al can be clustered together. Hence, we have sufficient 

information from the above analysis to move forward towards microstructure analysis.  

 

 

Fig. 16.  
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Orientation of various elements in the PC space 

 

 

Fig. 17.  

Scree plot for PC analysis: Two PC 

components were chosen 

Fig. 18.  

Orientation of various properties in the 

PC space 

 

Figure 17 shows the scree plot for various properties. Based on eigen values, two PC’s 

can extract most of the information from the dataset. Figure 18 shows the orientation of 

various elements in the PC space. In Figure 18, it can be observed that (BH)max, Br, µ, 

Hc, jHc and Mr contributes strongly on PC1, while Ms and density strongly contributes 

towards PC2. (BH)max, Br, and Mr can be clustered together. These findings are in line 

with the previous observations. Hence, we can proceed further and look towards the 

orientation of various alloys on the PC space along with the alloying elements. Here, the 

alloys were plotted on the PC space along with the elements. Here, the element’s 

contribution towards a certain PC is related to the length and orientation of the arrow 

corresponding to that particular PC. Cluster analysis was performed by K-means 

clustering (Kaufman approach). Davies-Bouldin index (D-B index), is a measure of 

quality of clustering and it is used for determining the appropriate number of clusters 
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into which the dataset can be divided. D-B index is the sum ratio of internal variance of 

each cluster with inter-cluster distance. In partitive clustering, one prefers small internal 

variance of each cluster along with high inter-cluster distances. Thus, D-B- index needs 

to be minimized. That is, number of clusters corresponding to lowest D-B index is 

applied on the dataset. Based on D-B index, the data set was divided into 8 clusters. 

Alloys belonging to different clusters were denoted by different symbols in Fig. 19 which 

used 173 alloys that were actually manufactured and experimentally evaluated. A few 

alloys were marked in order to avoid overlapping and give clear understanding. These 

alloys are from the best alloys ranked based on (BH)max values (as mentioned in Table 

2).  

 

 

Fig. 19.  

Orientation of various elements in the PC space 
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From Figure 19, one can observe that, Cu, Hf, Nb, and Fe contributes more towards 

PC1, of which Fe has the highest contribution. Ni and Al contribute more on PC2. Ti and 

Co has similar effect on both PC1 and PC2. Length and orientation of arrow are similar 

for Cu and Hf. Hence, Cu and Hf may affect the properties of alloy in the same manner. 

Similarly, length and orientation of arrows corresponding to Ni and Al suggests that 

these elements will affect the properties in the same way. One can observe that the 

marked alloys are clustered in a very small region while inferior alloys cover a majority 

of the PC space. Hence, if a certain alloy composition is near these top alloys in the PC 

space, then they can be given a chance over others during the selection of alloys for 

experimental validation. 

Niobium has the lowest contribution towards PC1 while it is almost orthogonal to PC2. 

Hence, if we want to remove an element for rare-earth addition, we can reject Nb and 

manufacture a few alloys without it. 

Thereafter, we used the dataset of 40 alloys selected by MCDM and performed PCA on 

it. This was followed by cluster analysis on the dataset by K-means clustering (Kaufman 

approach) method. Based on D-B index, the data set was divided into 5 clusters. Alloys 

belonging to different clusters are denoted by different symbols. In Figure 20, one can 

see that the orientation of the arrows has been altered. This is expected as these alloys 

were selected by MCDM, and hence this reduced set will have different variance. A few 

alloys have been marked in Figure 19 and 20. It can be observed that superior alloys 

are clustered together as alloys near these marked alloys were candidates that were 

part of the next set of alloys with superior properties. Hence, this method can be used 

for screening of the alloys prior to manufacture. 
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Fig. 20. 

Orientation of various elements in the PC space 

 

In this set too, arrows corresponding to Cu and Hf overlap each other, which confirms 

our previous findings. Arrows corresponding to Ni and Al are oriented together as 

observed before. Nb is almost orthogonal to PC2 and, hence, has minimal effect on it. 

Nb is collinear to PC1, but length of arrow is smallest for Nb along PC1. His means that 

Nb will have least contribution. Therefore, one can think of removing Nb from the next 

set of alloys and have it substituted with a rare-earth element. One peculiar finding is 

that Co and Ti are oriented together. This needs further investigation. 
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5. Discussion 

In this work, we focused on ways to explore an optimum set of combinations of 

chemical concentrations for a single heat treatment protocol. Readers are advised to 

refer to the following work for better understanding of the experimental setup and 

detailed analysis [29, 30]. Figures 2, 3 and 4 show the scatter plots among magnetic 

energy density, magnetic coercivity, and magnetic remanence. Top ten alloys are 

marked in these figures. In these figures as well as Table 2, alloys have been ranked on 

the basis of (BH)max values. At present, the best alloy is alloy number 124. From Figures 

2, 3 and 4 one can observe that the Pareto-optimized alloys (modeFRONTIER and 

IOSO) dominate the initial 80 candidate alloys randomly predicted by Sobol’s algorithm. 

One can observe from the figures that we were able to improve upon Hc without 

compromising on Br. 

In SVR, only Nickel showed some weak/mixed response for (BH)max. Hence, there is 

scope for improvement in the accuracy of the response surface algorithm. Copper was 

found to show a direct correlation with Hc and Br. In this case, response surface 

predictions are at par with the literature. Hafnium shows positive correlation with Hc and 

Br, which is promising, but needs further evaluation. 

PC analysis proved to be helpful in reducing the dimensionality of the data set for 

visualization. PC analysis points towards a correlation between elements Cu-Hf and Ni-

Al. Ni-Al rich phase is known in AlNiCo alloys and its effect on magnetic properties is 

supported by data from the literature. Hf has been rarely used in AlNiCo alloys and 

hence its similarity with Cu can be exploited to improve the magnetic properties. Hf 

enhances high temperature properties, hence the new magnets are supposed to have 

superior magnetic properties at elevated temperatures.  
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From Figure 19 and 20, one can see that Nb has lowest contribution on PC1, although it 

is collinear to it. Niobium is almost orthogonal to PC2 and hence, it will have least 

contribution on it. This suggests that if one needs to exclude an element from further 

analysis, one can think of excluding Nb and manufacture a few samples without it. 

These findings are quite helpful in development of knowledge base for design of new 

materials. At the same time, it has the potential to save time and money otherwise 

invested in random experimentation. PC analysis can be used as a tool to screen alloys 

predicted by various optimizers prior to manufacture. Alloys that are near to the 

previous best alloys in the PC space can be preferred for manufacture over the others 

for improved results. 

At present, ab-initio based calculations, as well as Calphad approach [37], are effective 

for limited systems (alloys having maximum 3-4 elements), and cannot handle eight 

elements [37]. Use of statistical tools will be helpful in determining the most influential 

alloying elements. This will be helpful in theoretical validation of the above findings. 

Additionally, one can work on finding the most stable phases needed for enhanced 

performance of these alloys by focusing on the most influential elements.  

 

6. Conclusions 

Details of a new methodology for accelerated development of new permanent magnetic 

alloys using multi-objective optimization algorithms, meta-modeling and data mining 

algorithms with periodic experimental verification has been presented. The example 

magnetic alloy family was an AlNiCo type of alloy having eight alloying elements. We 

focused on finding optimal concentrations of each of the alloying elements that will 

result in the maximum possible (in a Pareto optimum sense) magnetic energy density, 

magnetic coercivity and magnetic remanence. Our design optimization approach has 
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the potential to overcome initial flaws that cannot be ignored in design/development of 

new alloys. It was demonstrated that this alloy design methodology was able to 

successfully and rapidly recover from the initial flaws resulting from random 

experimentation, which would have been impossible when using standard alloy design 

methods. The resulting Pareto-optimized alloy compositions rival macroscopic magnetic 

properties of commercial AlNiCo alloys, but have different chemical concentrations, 

thus, suggesting that optimization algorithms are capable of exploring yet unexplored 

domains of the design space. Sensitivity analysis also revealed that certain alloying 

elements have negligible influence on magnetic properties of the alloy and could be 

replaced by some of the affordable and readily available rare-earth elements. The 

accuracy and robustness of the entire computational effort can be further improved by 

developing response surfaces that maintain high accuracy even outside the available 

experimental data set. The presented multi-objective optimization, meta-modeling and 

data mining algorithms with periodic experimental verification applied to material 

systems under well-defined limitations of composition (used elements as well as 

concentration ranges) and processing steps, represent the design optimization 

procedure that could be successful also for other systems that are characterized by 

other coercivity mechanisms based on other microstructures. Therefore, optimization of 

alloy composition has to be accompanied by optimization of processing which means 

incorporating additional design variables defining temperature versus time protocols and 

applied magnetic field versus time protocols. 
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