
/ji_/j_C,_ _,,_ I- 206656 ,/--//xn

///.,'-/G-c_.-I

0O/7"--

Final Report on
NASA MSFC contract NCC8-56

Monitored by: Martin Volz, Ph.D.

Microgravity Processing Branch, Mail Code ES75, Bldg. 4493, Room 103

NASA Marshall Space Flight Center
Huntsville, AL 35812

phone: (205) 544-5078 FAX: (205) 544-8762

September 15, 1994 - September 14, 1996

ELECTROMAGNETIC FIELD EFFECTS IN
SEMICONDUCTOR CRYSTAL GROWTH

Principal Investigator: George S. Dulikravieh, Ph.D., P.E.

Department of Aerospace Engineering, 233 Hammond Building

The Pennsylvania State University, University Park, PAl 6802

phone: (814) 863-0134 FAX: (814) 865-7092 E-mail: FT7@PSU.EDU

This final report provides information on the work accomplished by the P. I. and his

research team that is directly related to the research tasks as specified in the proposal

funded by the contract NCC8-56. Any other results and accomplishments of the P. I. and

his research team in the areas not directly related to this NASA contract are excluded from

this report.

ABSTRACT

This proposed two-year research project was to involve development of an analytical model, a

numerical algorithm for its integration, and a software for the analysis of a solidification process

under the influence of electric and magnetic fields in microgravity. Due to the complexity of the

analytical model that was developed and its boundary conditions, only a preliminary version of

the numerical algorithm was developed while the development of the software package was not

completed.

SUMMARY OF TECHNICAL ACCOMPLISHMENTS

We have developed and refined a new analytical formulation of combined electro-magneto-

hydrodynamics (EMHD) and have shown the inconsistencies and shortcomings of the existing

separate electro-hydrodynamic (EHD) and magneto-hydrodynamic (MHD) theories. The new

model consists of a system of at least twelve coupled non-linear partial differential equations in

case of a three-dimensional flow. The model is valid for multi-dimensional, unsteady, viscous

fluid flows involving electrically charged particles and electric linear polarization and

magnetization effects. All interaction between externally applied and internally induced electric
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and magneticfields have been incorporatedin the model. We have also developeda fully
conservativevectoroperatorform of theEMHD systemthat is suitablefor a directdiscretization
and numerical integration. Derivations of characteristicand non-reflecting open boundary
conditionswere also performed,thuscompletingthe analyticalpart of the researcheffort. A
numericalalgorithmfor iterativeintegrationof thediscretizedfully conservativeEMHD system
in boundary-conformingnon-orthogonal curvilinear coordinate system was incompletely
developedthat is basedon dual time-stepping.Developmentof anaccompanyingcomputercode
for theanalysisof unsteadythree-dimensionalEMHD flows is in its initial debuggingstages.
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ELECTRO-MAGNETO-HYDRODYNAMICS

AND SOLIDIFICATION

G. S. Dulikravich

Aerospace Engineering Department, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA

1. INTRODUCTION

Fluid flow influenced by electric and magnetic fields has classically been

divided into two separate fields of study: electro-hydrodynamics (EHD)

studying fluid flows containing electric charges under the influence of an

electric field and no magnetic field, and magneto-hydrodynamics (MHD)

studying fluid flows containing no free electric charges under the influence of a

magnetic field and no electric field. Traditionally, this division was necessary

to reduce the extreme complexity of the coupled system of Navier-Stokes,

Maxwell's and constitutive equations describing combined electro-magneto-

hydrodynamic flows. Recent advances in numerical techniques and computing

-technology, as well as fully rigorous theoretical treatments, have made analysis

of combined electro-magneto-hydrodynamic flows well within reach. A survey

of electro-magnetics and the theory describing combined electro-magneto-

hydrodynamic (EMHD) flows is presented with an emphasis on describing the

intricacies of the mathematical models and the corresponding boundary

conditions for fluid flows involving polarization and magnetization. This

survey concludes with a presentation of EHD and MHD flow models involving
solidification.

NOMENCLATURE

b = electric charge mobility coefficient, kg A s2

B_ - magnetic flux density vector, kg A 1 s 2



O

 - oE+P
e = cvT+ (y_.v)/2

E

E=E+vxB

f

g
h

H=B_/O.o-M
i = Jc + Jd

Ic
Jd = V_qo
M

M=M+vxP

P

P
qo

q
S

T

v

= average rate of deformation tensor, s _

= electric charge diffusion coefficient, m 2 s -i

= electric displacement field vector, A s m -2

= total energy per unit mass, m 2 s2

= electric field vector, kg m s3 A -1, or V m _

= electromotive intensity vector, kg m s3 A _

= mechanical body force vector per unit mass, m s"2

= acceleration due to gravity, m s2

= heat source or sink per unit mass, m 2 s 3

= magnetic field intensity vector, A m 1

= electric current density vector, A m 2

= electric conduction current vector, A m -2

= electric drift current vector, A m 2

= total magnetization vector per unit volume, A m

= magnetomotive intensity vector per unit volume, A m -_

= pressure, kg m _ s2

= total polarization vector per unit volume, A s m 2

= total or free electric charge per unit volume, A s m 3

= heat flux vector, kg s-3

= entropy per unit mass, m 2 kg" K l s2

= absolute temperature, K

= fluid velocity vector, m sl

GREEK SYMBOLS

t o = 8.854 x 10 -12

E r =E/E o

(Y
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= volumetric thermal expansion coefficient, K _

= Chorin's (1967) artificial compressibility coefficient

=dielectric constant (electric permittivity), kg _ m 3 s4 A 2

= vacuum electric permittivity, kg_ m 3 s 4 A 2

= relative electric perrnittivity

= thermal conductivity coefficient, kg m s3 K-_

= electric conductivity coefficient, kg 1 m -3 s 3 A 2

= fluid density, kg m -3

_v = 2l.tvd +_tv2I(V .v)= Newtonian viscous stress tensor, kg m -1 s2

x=TM = electromagnetic stress tensor, kg m ] s"2



"_= v + ,_EM
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I_o = 4_ x 10-7

#_ = l.tI_o

_tv

l.l.v2

Z E --E r -1

Z M = _t r - 1

q_=q:V:d

= stress tensor (viscous plus electromagnetic), kg m _ S "2

= magnetic permeability coefficient, kg m A 2 s2

= magnetic permeability of vacuum, kg m A 2 s2

= relative magnetic permeability

= shear coefficient of viscosity, kg m _ s1

= second coefficient of viscosity, kg m l s-1

= electric susceptibility

= magnetic susceptibility

= electric potential, V

= viscous dissipation function, kg m"s -3

2. BACKGROUND

The scientific field of study that analyzes the ability of electro-magnetic
fields to influence fluid flow-field and heat transfer has been investigated for

decades. The equations that are most often used to model this phenomena

consist of the system of Navier-Stokes equations for fluid motion coupled with

Maxwell's equations of electro-magnetics augmented with the material

constitutive relations. The field studying these flows is often called electro-

magneto-dynamics of fluids [1], electro-magneto-fluid dynamics (EMFD) [2-5],

electro-magneto-hydrodynamics [6], magneto-gas-dynamics and plasma

dynamics [7], or the electro-dynamics of continua [8-10]. The full system of

governing equations has, until recently, been far too difficult to solve because
Navier-Stokes system becomes very complex when modeling flows involving

turbulence, chemical reactions, multiple phases, non-Newtonian effects, etc.

When coupled with Maxwell's equations, the complexity of the combined

EMHD system is raised by orders of magnitude. To reduce this complexity, the

analytical modeling has traditionally been divided [11] into flows influenced

only by externally applied electric fields acting upon electrically charged

particles in the fluid, and flows influenced only by externally applied magnetic

fields without electric charges in the fluid. The former are called Electro-

Hydrodynamic (EHD) flows [12] and the latter Magneto-Hydrodynamic (MHD)

flows [13]. More recently, rigorous continuum mechanics treatments of EHD

[14] and unified EMHD flows [9,10] have been developed. These continuum

mechanics approaches are limited to non-relativistic, quasi-static or relatively

low frequency phenomenon [15-17].



This chapter should provide an introductory survey of the background theory
to allow implementation of numerical analysis of unified EMHD flows and of

classical MHD and EHD flows with addition of liquid/solid phase change. An
overview of electro-magnetic theory with concentrated effort placed on
descriptions of the electric and magnetic fields and electric charges and currents
will be made to provide a physical understanding of the field-material
interactions causing polarization and magnetization effects. The system of
equations governing the unified EMHD theory and the corresponding boundary
conditions will be presented together with its fully conservative form that is
ready for numerical discretization.

3. POLARIZATION AND GAUSS' LAW

Charge polarization is created when electric charges of opposite signs are
separated by a distance. Although many references define several sources of

polarization [18], there are essentially two main sources of polarization: natural

and induced [13]. Natural polarization arises from natural dipoles and charged

particles. An example of a natural dipole is a water molecule which has a

geometry such that the centers of positive charges and negative charges do not

coincide. Since the molecules are allowed to move freely and orient randomly,
water will not have polarization on a continuum level. Now consider the fluid

water as it is frozen with an applied electric field. An induced polarization will

be created by the electric field by inducing an initial charge separation in
neutral particles [19], by causing greater charge separation within the

molecules, and by causing molecular alignment with the applied electric field in

case of natural dipoles [19]. Once locked in the ice crystal structure, the water

molecules will no longer be able to change their position or orientation.

Consequently, even after the electric field is removed, the ice will still have

polarization on a continuum level since the polarization caused by the electric
field aligning the water molecules was literally frozen into the ice.

From this example it may seem that there is no reason, when dealing with

fluids, to consider natural polarization. This, however, would be an erroneous

assumption. Though the natural polarization may show no continuum effects
without the presence of an electric field, in an electric field the total

polarization, .P.P,combines both the induced polarization due to the electric field

and the natural polarization of the molecules which are now aligned by the
electric field [13, p.22].



If polarization is assumed to be a linear function of the steady or relatively

low frequency electric field, then it can be defined as

r = eoXE (.E_+ v x B)= ap (E_+ v xB)= ape (1)

The electric displacement vector then becomes [19, p. 164] [9, p. 178].

D'-_o E+_P=Eo(I+)_E)E+EozEVxB=EoCr__E_.+EPvXB--E .E+EpvxB (2)

where the material property, XE, is the dielectric susceptibility. It is typically

obtained experimentally [20, p.86] and could be a function of frequency.

Electric charges come in two types: free and bound. Free charges arise from

electrons in the outer or free atomic shells and from ions. Bound charges are

those arising from the molecular geometry and displacement of atomic inner

electron shells [13, p.21]. Gauss's law for a linearly polarizable medium then

becomes [13, p.22]

V.D=qo (3)

or

V. (_oE + P)= V.(eE + ep_V x_B)= qo (4)

At this point it is important to note that qo multiplied with the charged particle

drift velocity, _vd , creates the convection or drift electric current, Jd [ 13, p.67],

while polarization current, 5, is defined as the variation of the total

polarization with respect to time [19, p. 121 and p.147].

4. MAGNETIZATION AND AMPERE-MAXWELL'S LAW

If the material in question may be considered linear, that is, if the

magnetization is a function of one material property and the strength and
direction of the applied magnetic field, then the magnetization is defined as [9,

p.178] [19, p.164] [20, p.92-96] [21, p.371-377]

M=M+vxP= _,M (5)



In addition to the electric currents arising from magnetization and direct charge

motion, other phenomenological currents have been observed and must be taken

into account when defining the total current, J [9, p.162-163]. Introducing the

effects of magnetization and polarization and rearranging constants, the

Ampere-Maxwell's law of electrodynamics may be rewritten as [13, p.30]

+ 0eoE1VxB_=_to VxM+/d+Jp _)
(6)

Magnetization and magnetic field vectors are often combined to form the

magnetic field strength vector, H, defined as

B
U =---M (7)

_to

The total current, J, is defined as the sum of the apparent magnetization current,

V xM, charge drift current, Jd, and phenomenological polarization currents,

Jp [13, p.26] since the contribution to the magnetization current by intrinsic

magnetization is zero. The Ampere-Maxwell's law for polarizable, magetizable

media can therefore be written as [19, p. 132]

oo___v x H_= -I (8)
_t

Detailed descriptions of these equations can be found in any number of texts

[19,20,21].

5. A MODEL OF UNIFIED ELECTRO-MAGNETO-GASDYNAMICS

(EMGD)

The full system of equations governing unified EMGD flows consists of the

Maxwell's equations governing electro-magnetism, the Navier-Stokes equations

governing compressible fluid flow, and constitutive equations describing
material behavior. Assuming a single-phase fluid and only one type of charged

particles in the fluid, this set has a minimum of 12 partial differential equations

that contains 13 unknowns: p, qo, T, p, and the three vector components of _.v,E,

and B, respectively. The thirteenth equation is the equation of state for the



fluid. The foundations of the electro-magneto-gasdynamic (EMGD) theory
were formulated by Eringen and Maugin [9,10] and are based on continuum

mechanics [22-25]. The rigor with which the constitutive, force, and energy
terms were derived leads to a model more complete and robust than any of those
found in classical literature [8,7,1,11-13,18-21 ].

Dulikravich and Jing [6,26] have shown that a compact vector form of the
unified EMGD system can be written as a combination of the Maxwell's

electro-magnetic subsystem and the Navier-Stokes fluid flow subsystem.
The Maxwell's subsystem (consisting of seven PDE's) is composed of

Ampere-Maxwell's law for polarizable and magnetizable medium

_D
-- V x H =-J (9)

3t

which can also be written as

O_Eo3t-Vx-- =---£o £o J -_) (10)

Faraday' s law

_B
-+VxE=0 (11)

3t

and conservation of electric charges

Oq-----2°+ V.J =0 (12)
Ot

which is a combination of Gauss' law

V.D = qo (13)

and the Ampere-Maxwell's law. Conservation of magnetic flux

V.B_=0 (14)

is also a part of the Maxwell's subsystem, but is not solved for explicitly.



The second part of the unified EMGD is the viscous, compressible flow
Navier-Stokes subsystem consisting of five PDE's and an equation of state of a
perfect gas. It is composed of conservation of mass equation

nO_.._v+ V •(p_v) = 0 (15)
3t

and a conservation of linear momentum (including electromagnetic effects)

3pv_+ V.(v_pv-z=)-V.(v(PxB))-V.((B_.M)I +(E..P)I)= S v
_t .... =

(16)

Here, I is the identity (unity) tensor and S___._ is a vector of

following dyadic identifies were used in equation (16)

(v_E)._v-v. (vv)._E

source terms. The

(17)

(18)

Conservation of energy equation is also a part of the Navier-Stokes subsystem

_t )+V'(gev)-V'_'v)+V'it-ph-pF-'-- - Dt +M'DB--Dt Jc'l::=0- (19)

It can be replaced by the Clausius-Duheim entropy inequality [9,2,4]

os h+o qvTP_->- T -V. -_ Dt T- Dt - (20)

The viscous stress tensor for a non-linear fluid is given as

I:"_= 2gt,,d + gvzI(V. X) + _1 d2 (21)



In the case of a media with non-linear physical properties, the unified EMGD
formulation for the electric conduction current and the heat flux can be

expressed as [9, p. 161-162].

Jc = I_I_E + t_2d'-E +(J3 d2 .E_ + tJ4VT + (i5d. VT +t_6d 2. VT + (yvE x B

ar 0 8(d. (E x B)- (d-E) x B) --I-(_9VT x B

+ G,0(d. (VT x B_B_)-(d. VT)x 13)+ t_11 (B. [_)B + t_12(B. VT)B

(22)

il = _ql_ + _2d.E + _%d 2 .E + K:4VT + _%d. VT + _¢6d2. VT + _¢vEx B

+Ks(d.(FxB)-(d.I_)xB)+K9VTxB

+ tC,o(d. (VT x B)-(d. VT)x B_B_)+K:,, (B •E_)B_+ I_I2(B- VT)B

(23)

The electro-magneto-thermal stress tensor for a non-linear fluid is [9, p.177-

178]

,gEM = u2_E ®1_ + _3B ® B + (14VT ® VT + cts_ ® d. i_)s

+a,oW.a_.w+ix,,

+ ix,sd. CE® VT- VT ® I_)- %s __ ® VT- VT ® I_). d

(24)

where W-Wij--_;ijkBk, while the subscript s indicates symmetrization.

Expressions for total polarization, P, and magnetization, M, of non-linear media

can be modeled with expressions of similar complexity [9, p. 175].

In these formulas, tx i, (_i and 1¢i are the physical properties of the media. Most

of these coefficients are still unknown although their exploitation can offer

potentially significant benefits in applications involving interacting electric,
magnetic, thermal, and stress fields. This theory is valid for the frequencies of

the electric and the magnetic fields that are less than approximately 1 kl-Iz and

for fluid speeds considerably less than the speed of light [14-17]. For higher

frequencies, certain physical properties become functions of the frequencies.

For higher speeds, relativistic effects will have to be taken into account.



6. CONSERVATIVE FORMS OF ELECTRO-MAGNETO-

HYDRODYNAMIC (EMHD) SYSTEM

A necessary condition that an iterative numerical solution of the EMGD

system will converge to the exact solution of the analytical EMGD system as

the computational grid is infinitely refined, requires that the EMGD system
must be rewritten in a fully conservative (divergence-free) form. This is

especially needed if strong gradients of dependent variables are expected to
exist in the solution domain. The fully conservative forms can then be used
directly in the finite difference, finite volume, or finite element discretization of

the EMGD system and its iterative integration process.

In the following derivations, it will be assumed that the fluid is

incompressible, homocompositional, that it has linear polarization and linear

magnetization properties, and that the frequencies of the applied electric and

magnetic fields are less than approximately 1000 Hz for this mathematical

model to be realistic. These are the only assumptions to be used in this model

which will be referred to as a unified electro-magneto-hydrodynamics (EMHD).

A fully conservative EMHD system in a vector operator form is given as [6]

__E vx_H = SE
t Eo _ (25)

_B
- +VxE=0 (26)

Ot - -

8%
+V.J = 0 (27)Ot

V._v = 0 (28)

]-±v. ×a)+ + V
j P

: so
8t P - -

(29)

(30)

For simplicity of notation we can define the following terms as [6,26]



1 1
(31)

£=
1 1

 o(l+xE) (32)

8p--8o_ E=_;-6 o (33)

A = p(I+zE)+epB.B
(34)

R= p[ + qo__E+ J × B + (VE_.)-_P_P+ (VB).M + V • (.y_v(Px B))- V •(__v- "1:) (35)

D-t =Vx B--M1-J=VxI-I- I
_to )

(36)

-Pt = ADt +A(V×E)×v+A[(_EDt+_ _
8o P

9

(37)

If we now assume that the fluid which is subjected to applied electric and

magnetic fields is of Newtonian type and if we allow only for linear

polarization (equation 1) and linear magnetization (equation 5), the constitutive
relations for the electric conduction current and for the heat flux vector become

[9, p.173-174]

IC = (Y, (E + v x B.)+ (I4VT +_7(E + v × B) x B.

+ _9grT x B + cyl, (B •(E + v × B))B + _3,2(B. VT)B
(38)



(ii= KI(E + v ×B)+ _:4VT+ KT(E + v × B.)x B_

+ K9VT X B_+ KIt(B__"(E + v x B))B_+ gl2(B_.VT)B_
(39)

Then, the EMHD source terms can be given in a compact vector form [6,26] as

s_---±_+__e,)
G o

(40)

s_- f_+l [qo_+(vx_E)×e- (vM).B_-(Ve)._E+_+1,,)×B_]
P

(41)

so=h+i_ +x×B_).[(.v_.v__+_ +r,,]-±_z"_.((_.v__-v×_)
p P

(42)

Notice that these source terms have been formulated in such a way as not to

contain explicit time derivatives [6,26].

6.1 Fully conservative Cartesian form of the EMHD system

The EMHD system of equations (equations 25-30) can now be written in a general

conservative form in terms of (x,y,z) orthogonal coordinate system as

--+--+ =S (43)
Ot Ox -ff_y+--ffz

Here, the solution vector of unknown quantities is given as

Q= E x, Ey, E z, B x, By, B z, qo, p, v x, Vy, vz, e (44)

where the asterisk symbol designates transpose of a vector. The vector of

source terms (those terms that do not contain divergence operator) is given as

E E v v v }*-" SxE, Sy, Sz, 0, 0, 0, 0, Sx, Sy, Sz, S ¢ (45)



In equation (44), Chorin's [27] artificial compressibility coefficient, [3, was used

to create the unsteady term in the mass conservation since physical unsteady
term does not exist in the mass conservation for incompressible fluids.

By combining equations (5), (7), (1), and (31), the Cartesian components of
the magnetic field intensity vector can be defined [6,26] as

H x = g B x + epVy (E z + vxBy - vyB x) - t;pV z (Ey + vzB x - vxB z)

Hy =g By +l_pvz(E x +VyB z -VzBy)-IZpvx(E z +vxBy-vyBx )

H z = g B z + epV x (Ey + vzB x - VxB z) - evVy (E x + VyB z - VzBy )

(46)

The flux vectors in equation (43) can then be defined as

0

_/Eo

-ny/E O

0

-Ez

Jx

Vx

Vx2+ _(p_Txx _NBM_VxNxEV PB

I

1

evx +p(_l_ -Ix)

(47)

-_/_o
0

_/%

0

Jy

Vy

1

V,Vx_? Vx ;)

P

(48)



 /Eo

0

0

Jz

V z

1 B

1 e

P

Here, we have written components of (E x B_) as

N_ B = PyB_ - P_By

PB= P,B, - P_B,Ny

N_B --P,By- PyBx

In addition, we have defined the terms

N B_ = ExP x + EyPy + EzP z + B x(H x -_ Bx ) + By (Hy -
)-to

NBp = BxP x+ ByPy + BzP_

OT OT OT

N,, = Bx _x + By-_y + Bz-_-z

By,,)+ Bz(Hz Bz)
l,to )to

(49)

(50)

(51)

(52)

(53)



I x = Vx(-p + Xxx)+ Vy'l:xy + VzXxz

Iy = vx'l:xy + Vy(-p+'l;yy)+ Vzl;y z

I z = VxXxz+ Vyl:s_ + vz(- p + Xzz)

(54)

Components of the electric current vector, .1,were defined as

OT 07 PB OT 3T
J_ =Vxq o+ff-LP x +O4_+--N x +09( B z By)

% _x Ep -_y _z

+ oll N_pB x +ot2NBrB x

Ep

Jy=Vy qo+aLPy +o4OT+OTNPS OT
e,p Oy 8p Y + 09(_z Bx--

+ Oll NBpBy + o12NBTBy
Ep

_)T

_X
Bz)

OT o 7 p. 3T 0T
Jz =Vzqo +a-_!"lPz +04 +_Nz +09 --- )

ep -_z E:p (_xx By 0y Bx

+ Oll NBpB z + o12NBrBz
Ep

(55)

and heat flux vector components were defined as

OT _TN_ f OT OWB
Clx= K:1Px +K4 + +K9(-_y Bz )+KI1NBeBx +KI2NBrBx_p _ _p -- "_-Z Y Ep

Ep

0T + ](7 N_8 /)T
+K 4_ _ Y +K9("_Z"zBx---

_T
Bz) + K:II NseBy + ](12NsrBy (56)

3x el,

3T , _:7 ,,, P. (3Tdlz - K_ Pz + K4 _- -- IX z + ](9 By - --Vz Vx
8T

Bx) + ](11N.pBz + _q2NBvBz
_)y ep



7. CHARACTERISTIC-BASED INFLOW AND OUTFLOW
BOUNDARY CONDITIONS

For most boundary value problems of electro-magneto dynamics, jump

conditions are exclusively used [9,28] to formulate solid wall boundary
conditions where a discontinuity occurs. At the inflow and outflow boundaries

where no surface or line discontinuities exist, an alternative approach based on

conservation law for continuous surfaces or lines become necessary.
Characteristic boundary condition formulation [29,30], which starts from a

characteristic form of the EMHD system, will be sketched here since it leads to

non-reflecting boundary condition formulation [31-36,26]. To f'md the

characteristic boundary conditions, it is first necessary to determine analytical

expressions for all eigenvalues of the characteristic system. The most common

approach is to use one of the symbolic programming languages software (LISP,

MACSIMA) in order to determine analytical expressions for each eigenvalue.
Since these software packages cannot be used for systems that have more than

five coupled partial differential equations, in the case of a complete EMHD

system which has twelve coupled partial differential equations, it is impossible

to find the eigenvalues using available symbolic programming software.

Consequently, we will use an alternative approach in which we will divide

the unified EMHD system into a Maxwell's subsystem and the Navier-Stokes

subsystem [33]. Each of these two subsystems will then be analyzed separately
by finding the analytical expressions for its eigenvalues by hand.

7.1 Characteristic-based boundary conditions for Maxwell's subsystem

For example, characteristic treatment of the Maxwell's subsystem can be

formulated by rewriting the fully conservative Maxwell's subsystem

Ot Ox 3y Oz
(57)

in a non-conservative (characteristic) form as

_t + AEM _x _y _z



In order to perform characteristic analysis for Maxwell's subsystem, care

must be exercised to ensure that all the terms appearing in the fluxes

EEM, FEM, (_EM are expressed as functions of the primitive variables

()EM={Ex, Ey, Ez, Bx, By, Bz, qo} * (59)

For illustration, the flux vector E'EM can be extractedfrom equation (47) as

F-'EM

0

Hz / 8 o

-Hy/8 o

= 0

-E z

Ey

Jx

(60)

For fluids with linear polarization and magnetization, H, and Hy are the same as
in equations (46), while Jx is given in equation (55). The flux vector Jacobian

matrix AEM is obtained as

0 0 0 0 0 0 0

a21 a22 0 a24 a25 a26 0

%1 0 a33 a34 a35 a36 0

0 0 0 0 0 0 0

0 0 -1 0 0 0 0

0 1 0 0 0 0 0

a71 a72 a73 a74 a75 a76 Vx

(61)

where the coefficients are

a21 = --_E v y a31 =-)CEvz (62)

a22 = zEvx a33 = ZEvx (63)



a24 = _'EVxVz %4 ------_EVxVy (64)

a25 = _EVyV z a36 =--_EVyV z (65)

a26 -- 1 xE(vEx+vz)1 zE(vZ+v2y ) a3s =___+ 2
_o _ _o

(66)

a71 --o I +OllB2x a72 = ffTBz +ollBxBy (67)

a73 =-OTBy + o_IBxB z (68)

a74 = t_7(VyBy + vzBz) + °11(ExBx + Nsp) +O12(NBr + Bx "')_'r
ep 0x

(69)

a75 = _Olv z _ 0_._2_7(p z + EpvxBy ) _ 09 0T _T
Ep "_Z + oIIEy Bx + o12Bx _y

(70)

a76 =O1Vy +0 7 (py _EpVxBz)+O 9 3T 3T
e"-p -0-Y-Y+ollEzBx +CnBx O---z (71)

Matrices BEtd and CEM may be obtained in the same fashion as equation (61).

After tedious algebraic manipulations [26], the vector of eigenvalues of the

flux vector Jacobian matrix Azr a is found as

_'EM ={0, X_, XE, 0, _,_, _,_, Vx} (72)

This means that the eigenvalues _,_= k 4 = 0, while _'7 "- Vx" The remaining

four eigenvalues can be obtained from the fourth order algebraic equation

_4 .j¢.aEM_3 _1_VEM_ 2 +,_EM_, +BE M _-0 (73)

where the coefficients in the fourth order characteristic polynomial are

_EM --'----a22 -- a33 (74)



VEM = a22a33 -- a26 + a35 (75)

7EM = -a26a33 -- a22a35

_EM = a25a36 -- a35a26

The four eigenvalues are the analytical roots given as

1 [1 (_)2

(76)

(77)

(78)

1 --_'4 (/)EMI- _'_EM1_,E._ (I)EMI 1 2 (79)

1o M2+ O m--n M2 (80)

1 0 [102
(81)

Here, different terms are defined as

2 --4VEM+4_(I)EMI -" (3['EM + _EM EM (82)

(I)EM2 = _EM -- 4_2M --4VEM + 4_IEM

aEM, = 2(VF_ +4vEM --46EM )

(83)

(84)

(85)

3

ZE M = 3(0tEM YEM - 48EM )-- V2EM
9

(86)

(87)



\

-- O.EM_E M )YEM (88)
6 27 2

For illustrative purposes, the following are the eigenvalues in the case of one-

dimensional EMHD flow where Vy = v z = 0 and a22 = a33 and a25 = 0. Hence

I 1 E21]v x +4 eogo(l+xM)-Z Vx
(89)

1_'E -" _'B "- _Ev x -- '_E2v x -I- • o_o(iar, zM)
(90)

Since /t/_ equals the speed of light in vacuum, it seems that for most

practical applications the incoming and the outgoing electromagnetic waves will

not be influenced by the fluid except in the situations where the fluid is very

highly ionized or when the fluid moves with a speed comparable to the speed of

light. In the case of a pure electro-magnetics without any fluid motion,

polarization, magnetization, or electric charges (_v=__P=M=qo =0), these

eigenvalues reduce to the eigenvalues of Maxwell's equations for electro-
magnetic fields in vacuum [35]

1 1 1

e_U_og_, 0, _'_og_' _ (91)

After introducing the similarity transformation matrix Sr.ra of the flux vector

Jacobian matrix AEra , the eigenmatrix _'.wI corresponding to A m becomes

_EM =diag[0, L_, k E, _._, _._, Vx] (92)

where _,_, _'E, _'_, _'B are given by equations (78-81).

For locally one-dimensional problems, wave propagation direction is well

defined. For multi-dimensional problems, there is no unique direction of

propagation, because the flux vector Jacobian matrices Arm ,Bmi ,Cml cannot



be simultaneously diagonalized. Therefore, characteristic boundary condition
analysis allows that only one of these matrices (relating to only one coordinate
direction) can be diagonalized at a time.

In the case that the x-coordinate is in the main flow direction, premultiplying

the equation (58) with the inverse of the similarity matrix, S_, gives

-' -' -7x  sEMn =0 (93)

Here, vector H_M is given as

HEM = BEM 3(_EM +CE M 01_M SEM (94)
---- Oy Oz

For the hyperbolic system, time dependent boundary conditions could be

derived based on the principle that outgoing waves are described by

characteristic equations, while the incoming waves may often be specified by a

non-reflecting boundary condition [31,32,36]. Following this approach, the

characteristic and non-reflecting boundary conditions at the inlet boundary x = a

and at the outlet boundary x = b can be given by the i-th equation of the system
(93)

( s'_M 0t_EM0t _-Li'FaVl+s-l-_i'EMfir_][ =0 (95)
x=a.b

-!

Here, the left eigenvector Si,EM is the i-th row of S_ and

Lt,E M =. i,EM i. M
for outgoing waves

for incoming waves

(96)

7.2 Characteristic-based boundary conditions for Navier-Stokes subsystem

Similar derivations can be used to determine analytical expressions for the

eigenvalues and the non-reflecting boundary conditions of the Navier-Stokes

subsystem of the unified EMHD as shown by Dulikravich and Jing [26].



Characteristic treatment of the Navier-Stokes subsystem of the

EMHD system can be performed by converting its conservative form

_QNs

_t
_. _F-_NS.,o q_ _FNs ._ _J NS -- SNS

Ox Oy Oz

unified

(97)

into its non-conservative (characteristic) form

_QNs _QNs _II_NS _I_NS -- SNS

_t +ANs bx _-BNs 3y _-CNs 3Z
(98)

where the solution vector of unknowns is given as

QNs={p/[3, Vx, Vy, v z, e}* (99)

From equation (47) it can be seen that flux vector ENS becomes

Fz,NS

V x

P Xxx N_ P VxNxpB

9 9

VxVy

VxV z

ev x

P 9

'[xy VyNxPa

9 9

"txz VzNxpB

9 9

+qx Ix

9 9

(100)

Terms related to d, d2 and VT will not be considered in the evaluation of

coefficients of the flux vector Jacobian matrix ANS since they are associated

with first derivatives of velocity, v, or temperature, T. The flux vector Jacobian

matrix ANS = 3ENs/_QNs then becomes



0 1 0 0 0

/19 a22 a23 %4 0

0 a32 a33 a34 0

0 a42 a43 a4, 0

vxl3/P %2 %3 a_4 vx

(101)

The coefficients in this matrix are given in detail by Dulikravich and Jing [26].

Eigenvalue vector of the flux vector Jacobian matrix Ass is

- { }"_'NS "-Vx, _'+, _'+, _';, _'; (102)

which can be written as a diagonal eigenvalue matrix

_,Ns=diag[Vx, g + _+ _+ _,e+]U _ V _ W_ (103)

The eigenvalues _.+,_.v+, _.+, _.+ are obtained analytically by solving a fourth

order characteristic polynomial (similar to equation 73) where

_NS = a22 + a33 + a_ (104)

VNS "-- a22a33 + a22a44 + a33a44 - a34a43 - a24a42 - a23a32 - _
P

(105)

(106)

_NS = (a34a43 - aa3a44) "_

P
(107)

so that the four eigenvalues are

_ lq} .[1 2
NSl+v' ONSl--nNSl (108)



1 O /102
_,+=-_ N_,-_/_ N_,--nNS, (109)

_.+_=--_ONS2+ O_S2--f_NS2 (110)

1 0 /102
_;=-_ Ns_-_/_ NS_--nNS_ (111)

with the coefficients given by equations of the type similar to equations (82-88).

Characteristic waves defined by the Navier-Stokes equations in the EMHD

system have a great dependency on both fluid dynamics and electro-magneto-

dynamics, in particular, the electro-magnetic properties of the media and

electro-magnetic field quantities. When electric and magnetic fields are absent,

these eigenvalues reduce to the well-known eigenvalues of a classical Navier-

Stokes system for Newtonian, incompressible flows. These eigenvalues are

{VxVxVxV x +c, vx -c}. Here, the equivalent local speed of sound is defined

asc=_/v_+̀<_/_).
Following Thompson's approach [30,31], non-reflecting boundary conditions

for the Navier-Stokes subsystem are hence formulated as follows. The

characteristic form of Navier-Stokes subsystem influenced by the electro-
magnetic effects is possible to write as

Sds OQNs ~ -1 ()QNs -I ~
3t _- _LNS SNS OX + SNsHNs -" 0 (112)

where the i-th equation is

s,._sOOss - -, _s -, -
_-_ l- _,,,NsSi,NS _XX + Si'NSI'INs "- 0

(113)

and the new source vector is

_QNs _QNs SNS (114)
fiNS "_--BNS Oy _CNs OZ



Here, the left eigenvector S "1 is the i-th row of S_s_i,NS

_! - ]0t + Li'NS + Si'NsHNs

x=a,b

=0 (115)

where

{_ - 1 _ for outgoing waves
Li,NS-"' i'NS Si'NS _X (116)

for incoming waves

Practical implementation of Thompson-type [31-33,36,26] non-reflecting

boundary conditions deserves further comments. The essence of his approach is

that one-dimensional characteristic analysis can be performed by considering

the transverse terms as a constant source term. In order to provide well-posed
non-reflecting boundary conditions in multi-dimensional cases, substantial

modifications may be required to take into account the transverse terms at the

boundaries [37,38]. It should be emphasized that physically there are cases
where flow information propagates back from the outside of the domain into the

inside through the boundaries by the incoming waves [39]. This fact makes it

possible that building a perfectly non-reflecting (absorbing) boundary condition

[40] might lead to an ill-posed problem. Under these circumstances, corrections

may be needed to make them partially non-reflecting.

7.3 Numerical integration of EMHD system

It is often highly desirable to have a time-accurate unsteady solution to the

governing EMHD equations. One numerical integration algorithm that could be

used is an advanced form of the dual time-stepping technique, also called an

iterative-implicit technique, originally developed by Jameson [41].
To create an instantaneous picture of the solution of the entire EMHD

system at a given physical time, equation (43) must be driven to zero in its

entirety, not, as is commonly done in time-marching techniques by driving only

the physical time-dependent term to zero. To this end, a pseudo-time derivative
is added to the EMHD system (equation 43) which can be rewritten as

3x 3t 3x _y 3z
(117)



or as

O--_- 0t (118)

where R is a composite of the spatial and source terms and is called the

residual. Thus, given a physical time step the governing equations are time

marched in pseudo time, x. Upon convergence, the right-hand side of equation
(118) becomes zero and the solution at the desired physical time level, t, is

obtained. Note that the pseudo-time dependent variable vector, 0, does not

have to be the same as the physical time dependent variable vector, 0.

An additional concern of great importance is that the system of equations

develops zero terms in the pseudo-time dependent variable vector, 0, for

incompressible fluids, fluids without electric charges, or systems in which the

electric and magnetic fields are non-interacting. This poses significant

problems for time-marching numerical solutions. This problem may be

alleviated, however, by proper selection of pseudo-time dependent variable

vector, Q, and through the use of matrix preconditioning.

By premultiplying 0 with a properly selected matrix, it is possible to

directly control the system eigenvalues. This prevents development of zeros in

the pseudo-time dependent variable vector, 0, and vastly improves iterative

convergence rates over a wide variety of flow regimes (low and high Mach and

Reynolds number combinations). The preconditioning matrix, F'(0), for the

EMHD system could be based on one developed by Merkle and Choi [42] for

the Navier-Stokes system. The preconditioned EMHD system may be written as

Ir oO= aO
- _ -- Ot (119)

Equation (119) can be transformed to a body-conforming non-orthogonal

curvilinear time-dependent (_, rl, 4; t) coordinate system. A high order of

accuracy is desired to properly resolve unsteady motions. A finite difference

scheme using fourth order accurate spatial differencing and second order

accurate physical time differencing could be used while the solution is advanced

in pseudo-time using a four-stage Runge-Kutta scheme which is second order

accurate for non-linear problems. Fourth order accuracy should be selected for



the spatial derivatives based on extensive research completed by Carpenter et al.
[30] which found that a Runge-Kutta advanced fourth order accurate scheme
provided the best convergence and stability of higher order schemes at
reasonable computational cost. Second order accurate differencing in physical
time could be selected based on stability and convergence studies performed by
Melson et al. [43] who found that for a Runge-Kutta advanced dual time-
stepping scheme second order backward differencing provided the most stable
physical time discretization while providing excellent resolution. The new
physical time step could be treated implicitly in pseudo-time, while all old
physical time steps and spatial derivatives could be treated explicitly. This is
unlike Jameson's early method [41] that treats both the physical time and the
spatial derivative explicitly and causes a restriction on the maximum physical
time step allowed. The discretized preconditioned system may be written as

0 ° =O n (120)

F'F-! + Cti2 At ,) (0i = O_ i A"U R m+l' i-1

(121)

0 °+l =0 4 (122)

where m=1,2,3,.., represents the physical time step, n=1,2,3,.., represents the
pseudo-time step, and i=1,2,3,4 is the Runge-Kutta stage number. Also,

F =O0/00 and tx i are the Runge-Kutta coefficients. Note that the physical

time-dependent term on the right hand side of equation (120) is held constant
for all four Runge-Kutta stages.

8. SUBMODELS OF EMHD

Until now, the numerical solutions of the unsteady three-dimensional EMHD

flows that have been reported in the open literature [34-36] did not account for

polarization or magnetization effects and did not involve charge density

transport equation. The reason is that the complete unified EMHD system is

very large having extremely complicated source terms and two extremely



different time scales for the electro-magnetic fields and the flow-field.

Consequently, a number of simplified versions of the EMHD system have been

traditionally used in practical applications. These submodels can be grouped in

two general categories: EHD models and MHD models [11-13,44].

From the unified EMHD model, it can be seen that the electromagnetic field

is not the only cause of electric current and that the temperature gradient is not
the only source of heat conduction as is commonly assumed. The electric field,

magnetic field, and heat conduction may couple to produce charge motion and
heat transfer. These couplings are called phenomenological cross effects and

may be placed in four general categories: 1) thermoelectric, 2)

galvanomagnetic, 3) thermomagnetic, and 4) second order effects [9, p.161-
163]. These categories are based on the source of the effect and each will be

described in turn, as will be a comparison between classical EHD and MHD

models and the unified EMHD theory. The comparison concentrates on

similarities and differences between electro-magnetic force and electric current
and heat conduction terms in the EHD, MHD, and EMHD models. The

inadequacies of simple superpositioning of classical simplified models to fully
describe the unified EMHD flows are also noted.

Couplings between the temperature gradient and the electric field cause

thermoelectric effects so that a temperature gradient in the material produces an

electric current (Thompson effect), while applied electric field produces heat

conduction in the material (Peltier effect). These two effects together are

known as the Seebeck effect and form the basis for thermocouples. Also note

that the c_ term in the electric conduction current (equation 22) and the _¢4term

in the heat conduction (equation 23) are the ohmic charge conduction and
Fourier heat transfer, respectively.

When the electric and magnetic fields are simultaneously applied but are not

parallel, electric current (Hall effect) and heat conduction (Ettingshausen effect)

perpendicular to the plane containing the electric and the magnetic fields are

induced in the media. These effects are termed galvanomagnetic [9, p. 161-163].

When the temperature gradient and the magnetic field are simultaneously
applied but are not parallel, electric current (Nernst effect) and heat conduction

(Righi-LeDuc effect) perpendicular to the plane containing the temperature
gradient and the magnetic field are induced in the material. These effects are
termed thermomagnetic.

It should be noticed (equation 22) that the interaction of the average rate of

deformation tensor and the electric field can also create the electric current,
while the interaction of the material deformation tensor and the electric field can

create the temperature gradient (equation 23). These piezo-electric and piezo-

magnetic effects can further be enhanced if the material is non-isotropic.



8.1 Classical electro-hydrodynamics (EHD)

As mentioned previously, EHD flows are those in which magnetic effects

may be neglected and charged particles are present, while only a quasi-static

electric field is applied so that the magnetic field, both applied and induced,

may be neglected [11]. One of the implied assumptions is that the flows are at

non-relativistic speeds, although in astrophysical flows this assumption cannot

be made [1]. Atten and Moreau [44] present a detailed coverage of classical

EHD modeling and discuss the relative importance of terms in the force and

electric current through stability analysis. With these assumptions, the

Maxwell's system reduces to [11]

V.D_D_=V.(e_ =qo (123)

bq°+V.l =0 (124)
Ot

With classical EHD assumptions, the electro-magnetic force in the unified

EMHD theory reduces to:

f_ = qoE + (V_E). P = qoE + (VE)-epE (125)

This is not the form of the electro-magnetic force usually seen in classical EHD

formulations [11]. Through the use of thermodynamics and the material

constitutive equation of state, the electric force per unit volume in EHD is most

often used in the following equivalent forms [10, p.505-507][8, p.59-63]

fFaW=qoE E'Eve+ _E.Ep (126)
- 2 - ---const

fEM=q°E E'E (Oe/p z [ "E(o_'] ]
(VT _ +Pv _E_E (127)

- 2 t)Z ---const --L _p _r=const

The three terms in the equation are the electrophoretic, dielectrophoretic and

electrostrictive terms, respectively.

The electrophoretic force or Coulomb force is caused by the electric field

acting on free charges in the fluid. It is an irrotational force except when charge

gradients are present [45].



The dielectrophoretic force is also a translational force, but is caused by

polarization of the fluid and particles in the fluid. The dielectrophoretic force

will occur where high gradients of electric permittivity are present. This

condition will be true in high temperature gradient flows, multi-constituent

flows, particulate flows [18] or any time the electric field must pass through two

contacting media of different permittivities [46]. Grassi and DiMarco [47] treat

the dielectrophoretic force as it applies to bubbly flows and heat transfer.

Poulter and Allen [45] note that the dielectrophoretic force produces greatest

circulation when the dielectric permittivity is inhomogeneous and non-parallel

with the applied electric field.
The last force, the electrostrictive force, is a distortive force (as opposed to

the previous translational forces) associated with fluid compression and shear.
The electrostrictive force is usually smaller than the -phoretic forces. It is

present in high pressure gradient flows, compressible flows, and flows with a

non-uniform applied electric field. Pohl [18] describes this phenomenon in

greater detail.
Classical EHD modeling derives directly from the unified EMHD theory.

Thus, the electric current density, using EHD assumptions, reduces to

i = qoV+ chE_+ _4VT (128)

However, this is not the form seen in classical EHD models [11] which typically

define the conduction electric current as only the first term of equation (21).
However, more advanced classical EHD models define the current as [9, p.562]

J = qov + Jc = qov + qob _E- DoVqo (129)

The last two equations imply that the temperature gradient is directly related to
the electric charge gradient. This may be shown to be true based on the

Einstein-Fokker relationships, derived from studies of Brownian motion [25,

p.264-273], which relate any concentration gradient to a charge mobility and a
diffusion. Newman [48] also provides a detailed discussion of the concepts of

diffusion and mobility. The electric charge diffusion term is often neglected

where only limited amount of free charges are available [49].

By introducing classical EHD assumptions in the unified EMHD theory, the

equation (23) for heat flux reduces to

Cl= ;qE+ _c4VT (130)



The classical EHD models neglect the contribution to heat transfer from the
electric field so that equation (130) reduces to Fourier's law of heat conduction.

¢1= -_:VT (131)

Although classical EHD modeling seems to neglects heat transfer induced by

the electric field and electric current, Joule heating effect (-Jc" E_. term from

EMHD equation 19) is usually included in the EHD computations [50,51 ].

8.2 Classical magneto-hydrodynamics (MHD)

The classical modeling of MHD assumes non-relativistic and quasi-

magnetostatic conditions. It implies that electric current comes primarily from

conductive means and that there are no free electric charges in the fluid [11].

With these assumptions Maxwell's system becomes

V.B=0 (132)

_B
VxE=---= (133)

_)t

Vxll=J (134)

v.1 =0 (135)

The modifications to the Navier-Stokes relations come from the electro-

magnetic force on the fluid from which all induced electric field terms have

been neglected. Using the MHD assumptions, the electro-magnetic force per
unit volume in the unified EMHD theory becomes [11]

[EM=/xB_+(VB_).M (136)

The second term, source of dimagnetophoretic and magnetostrictive forces, is

typically neglected in classical MHD [10, p.508]. Thus, the electro-magnetic
force per unit volume in the classical MHD is modeled as [11]

[F.M = i xB (137)



By making MHD assumptions, the conduction current in the EMHD can be

expressed with equation (38). However, classical MHD theory usually defines
the electric conduction current as [10, p.510]

Jc =olE- +oaVT = olE_.+ol(v×B) +o4VT (138)

Here, 04 is the Seebeck coefficient [9, p.174] which in some classical MHD

formulations is not used [ 11]. Clearly, the classical MHD formulations neglect
a significant number of physical effects [52,53].

Similarly, in classical MHD modeling, Joule heating is often included in the
energy relation, but the heat transfer constitutive relation remains the same as in

equation (11). In comparison, the unified EMHD model with classical MHD

assumptions can be expressed with equation (39).

It could be concluded that classical EHD models include many important
effects and correspond to the unified EMHD theory well, while classical MHD
formulations need improvements in the force, current and heat transfer terms.

As in classical EHD modeling, it is important to be aware of the fact that
many force, current and heat transfer terms can be written in several different

forms, each of which is equivalent. It is, therefore, important to recognize the
potential danger of simply adding terms from different MHD models.

9. SOLIDIFICATION WITH ELECTRO-MAGNETIC FIELDS

During solidification from a melt, if the control of melt motion is performed
exclusively via an externally applied variable temperature field, it will take

quite a long time for the thermal front to propagate throughout the melt thus

eventually causing local melt density variations and altering the thermal

buoyancy forces. It has been well known that an externally applied steady
magnetic or electric field can, practically instantaneously, influence the flow-

field vorticity and change the flow pattern in an electrically conducting fluid

[51-59,33]. Similarly, it is well-known that applying an electric potential
difference to a flow-field of a homogeneous mixture will cause fractionation or

separation of the homogeneous mixture into regions having high concentration

of the constituents. This phenomena, known as free-flow electrophoresis, has

been extensively studied experimentally and, to a lesser extent, numerically [50]

using classical EHD modeling. Nevertheless, there are no publications yet on

actual algorithms for determining the proper variation of intensity and
orientation of the externally applied magnetic and electric fields. This is not a



trivial problem because we are dealing with a moving electrically conducting
fluid within which an electric current is induced as the fluid cuts through the
externally applied magnetic field lines [11]. This induced electric current
generates heat (Joule effect) as it passes through the fluid that has a finite
electrical resistivity. In the case of solidification, the amount of heat generated
through the Joule effect due to the externally applied magnetic field is often
neglected compared to the latent heat of solidification and the amount of heat
transferred in the melt by thermal conduction.

The latent heat released or absorbed per unit mass of mushy region (where
Tliquidus> T > Tsolidu s ) is proportional to the local volumetric liquid/(liquid +
solid) ratio often modeled [59] as

n
V! -/ ! _- "T-Ls°lidus --on

f - V_ + Vs \Tliquidus - Tsondus
(139)

Here, 0 is the non-dimensional temperature, the exponent n is typically 0.2 < n

< 5, subscripts _ and s designate liquid and solid phases, respectively, while f =

1 for T > Tliq,id,sand f = 0 for T < TsoliOu_. Physical properties (density,

viscosity, heat conductivity, heat capacity, etc.) are often significantly different
in the melt as compared to the solid phase. We will assume linear variation of

density as a function of the non-dimensional temperature, 0, in the liquid

P' )11(e-°') =p,.[I- 0,.)] (140)

with a similar expression for the solid phase where the reference values are

designated with the subscript "r". In this work, we assumed that electric

conductivity and magnetic permeability do not vary with temperature.

The EHD and the MHD systems of equations including solidification can be

non-dimensionalized in a number of ways. The typical non-dimensional
numbers are [33,60]:

Reynolds hydrodynamic Froude Eckert

-p'Vre v/ E,:-
Ix,_ grer CrAT r

(141)



Prandtl hydrodynamic

PR - _v_Cr
Kr

Hartmann

Stefan Grashof
2 3

SrE - CrATr GR = PrO_rgrATr_ r

Lr _t_

Prandtl magnetic Prandtl electric

Pm -- [lw(;r_tr PE -- livr

Pr PrbrA_r

(142)

(143)

Coulomb Electric field Charge diffusivity

SE -- qorACr qore2r _tvr
PrV2 NE - D E-ErAd_r PrDor

(144)

where _w,Cr,ACr,Kr,_r,Lr,_r are the reference values of viscosity, specific

heat, electric potential difference, heat conductivity, magnetic permeability,

latent heat of liquid-solid phase change, and length, respectively. Also, mixture
density and modified heat capacity can be defined as

Pmix =f Pt + (1-f)Ps (145)

0s)
8(ct Or)+(1- f)p, (146)

C_x = fPt 80 80

An enthalpy method [58,59] can be used to formulate the equivalent specific
heat coefficient in the solid phase defined as

1 8L
c_ =% (147)

SrE 80

so that latent heat is released in the mushy region according to equation (139).

9.1 EHD and solidification

EHD equations for phase-changing liquid-solid mixtures, where the solid

phase is treated as the second liquid with extremely high viscosity, can be

derived using Boussinesq approximation for thermal buoyancy [61]. We can

also define mixture electric charge mobility



bmix = f b e +(1 -f)b s (148)

and combined hydrodynamic and hydrostatic pressures in liquid and solid

= P +----_ and _s = P +---_ (149)

where q_ is the non-dimensional gravity potential defined as g = Vq_.
w

Assuming equal velocities for both phases, the mass conservation is

V._v=0 (150)

Linear momentum conservation for two-phase EHD flows with thermal
buoyancy and Coulomb force

OnYxig_v+_tfptV. v(y.y.+ _,I)+= (1-f)p,V. v(y.y_+ _s I)

: }f{V.[K" - (Vv)" g (151)

+ (I- f){V.I'v_(Vv + (Vv)*)l+ G----_-_2p_a_0gl + SEqoELRe - J Ro -j

Energy conservation for incompressible two-phase EHD flows including Joule
heating can be written as [60]

i30
Cmix_'+ fPtV" (ct e__v)+(1- f)p,V.(c_ e_.v)

1

v v.

E.E E.Vqo )+SEEc qov'E+qobmi,_ R,PE bmix _b-_E

(152)

Electric charge conservation equation including migration and diffusion is



+V. qo _v-_R__E RoDE
V" (bmixVqo) (153)

Since _.E= -V¢, the electric potential equation resulting from equation (13)

V. [(fee + (1- f)e,)V¢]=-NEq o (154)

must be solved simultaneously with the equations (151-154).

9.2 MHD and solidification

MHD two-phase solid-liquid flows can be modeled using a similar approach.

The non-dimensional Navier-Stokes equations for phase-changing mixtures of

two liquids (solid phase is treated as the second liquid with extremely high
viscosity), can be formulated [33] so that the mixture mass conservation is

V.__v= 0 (155)

Linear momentum conservation for two-phase MHD flows with thermal
buoyancy and magnetic force

2v
P._x-=+ fP,V" v(y_y_+ _,I)+ (1- f )psV. v(y_y_+ _,I)

_t =

L Re - Re - PmR2
(156)

, G R H 2 }
+(l-f) v.rl'tv'(Vv+(Vv) )]+-.XTp,_,O g+ (VxH)xH

hR, - - j Ko - P-_g' - -

The non-dimensional hydrodynamic, hydrostatic, and magnetic pressures were
combined to give

_P+9 H2
Pe ---- "_-_"-I" --2 gt H'H

Pt F_ PmRe and _=_+--_+ H2 gsH.H (157)F_ w2PmRo



where (p is the non-dimensional gravity potential defined as g = V(p. Then, the
!

energy conservation for incompressible two-phase MHD flows including Joule
heating can be written as [33]

30 (ct0_v)+ (1- f)p,V (c_0v)Cmix--_-+ fptV. . _

= f[R--_p_ V" (_:tVO) +
1 _(V×H).(V

(_t VmKe
(158)

f) 1
1 H2Ec23 (VxI-I)'(VxH)1- --(_s PmRe

The magnetic field transport equation for the two-phase MHD flow in its non-
dimensional form becomes [ 1, p. 150]

a--_ v x + x_H
O'sl_s

If electric conductivity and magnetic permeability are assumed constant, then

a _vx( xa)= (:- o/(,,,,,)v:H
c3t P_Re --

(159)

needs to be solved either simultaneously or intermittently [33] with the
equations (155-158).

ACKNOWLEDGMENTS

This work was partially supported by the ALCOA Foundation Grant. The
author would like to thank Dr. Yimin Ruan and Dr. Owen Richmond of the

ALCOA Technical Center, Dr. Martin Volz of Microgravity Program at NASA
Marshall Space Flight Center, and Mrs. Sheila Cot and Professor Akhlesh

Lakhtakia of the Pennsylvania State University for their support of this work.



REFERENCES

1. W.F. Hughes and F.J. Young, The Electromagnetodynamics of Fluids,

John Wiley and Sons, New York (1966).

2. G.S. Dulikravich and S.R. Lynn, ASME FED-Vol. 235, MD-Vol. 71

(1995) p.49.

3. G.S. Dulikravich and S.R. Lynn, ASME FED-Vol. 235, MD-Vol. 71

(1995) p.59.

4. G.S. Dulikravich and S.R. Lynn, International Journal of Non-linear

Mechanics, Vol. 32, No. 5 (September 1997) p.913.

5. G.S. Dulikravich and S.R. Lynn, International Journal of Non-linear

Mechanics, Vol. 32, No. 5 (September 1997) p.923.

6. G.S. Dulikravich and Y.-H. Jing, ASME AMD- Vol. 217 (1996) p.309.

7. S.-I. Pai, Magnetogasdynamics and Plasma Dynamics, Springer-Verlag,

Vienna/Prentice Hall, Inc., Englewood Cliffs, N.J. (1963).

8. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media,

Pergamon Press, New York (1960).

9. A.C. Eringen and G.A. Maugin, Electrodynamics of Continua I;

Foundations and Solid Media, Springer-Vedag, New York (1990).

10. A.C. Eringen and G.A. Maugin, Electrodynamics of Continua II; Fluids

and Complex Media, Springer-Vedag, New York, (1990).

11. O.M. Stuetzer, Physics of Fluids, Vol. 5, No. 5 (1962) p.534.

12. J.R. Melcher, Continuum Electromechanics, MIT Press, Cambridge, MA

(1981).
13. G.W. Sutton and A. Sherman, Engineering Magnetohydrodynamics,

McGraw Hill, New York (1965).

14. A.S. Wineman and K.R. Rajagopal, Continuum Mech. Thermodyn., Vol. 7

(1995) p.1.

15. P.G. Bergman, The Special Theory of Relativity, Handbuch der Physik,

Bd. IV, Springer-Verlag, Berlin (1962).

16. M.J. Marcinkowski, Acta Physica Polonica, A.81 (1992) p.543.

17. A. Laldatakia, J. of Advances in Chemical Physics, Vol. 85 (1993) p.311.

18. H.A. Pohl, Dielectrophoresis; The Behavior of Neutral Matter in

Nonuniform Electric Fields, Cambridge University Press, Cambridge, U.K.

(1978).
19. C.T.A. Johnk, Engineering Electromagnetic Fields and Waves, John Wiley

and Sons, New York (1988).

20. W.N. Cottingham and D.A. Greenwood, Electricity and Magnetism,

Cambridge University Press, Cambridge (1991).



21. H.A. Haus and J.R. Melcher, Electromagnetic Fields and Energy, Prentice
Hall, New Jersey (1989).

22. A.C. Eringen, Mechanics of Continua, 2nd Ed., Robert E. Krieger
Publishing Co., Malabar, FL (1967).

23. A.C. Eringen, Ed., Continuum Physics-Volume II; Continuum Mechanics
of Single-Substance Bodies, Academic Press Inc., New York (1975).

24. R.M. Bowen, Introduction to Continuum Mechanics for Engineers,
Plenum Press, New York (1989).

25. S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North
Holland Publishing Company, Amsterdam (1962).

26. G.S. Dulikravich and Y.-H. Jing, ASME IMECE, Dallas, TX (Nov. 1997).
27. A.J. Chorin, Journal of Computational Physics, Vol. 2 (1967) p. 12.
28. T.B.A. Senior and J.L. Volakis, Aproximate Boundary Conditions in

Electromagnetics, IEE, London, UK (1995).
29. C. Hirsch, Numerical Computation of Internal and External Flows,

Volume 1; Fundamentals of Numerical Discretization, Wiley-Interscience,
New York (1988).

30. M.H. Carpenter, D. Gottlieb and S. Abarbanel, J. Comp. Phys., Vol. 108
(1993) p.272.

31. K.W. Thompson, Journal of Computational Physics, Vol. 68 (1987) p.1.
32. K.W. Thompson, Journal of Computational Physics, Vol. 89 (1990) p.439.
33. G.S. Dulikravich, V. Ahuja and S. Lee, International Journal of Heat and

Mass Transfer, Vol. 37, No. 5 (1994) p. 837.
34. V.J. Shankar, W.F. Hall and H.M. Alireza, Proc. IEEE, Vol. 77, No. 5

(May 1989) p.709.
35. J.S. Shang, AIAA paper 91-0606, Aerospace Sciences Meeting, Reno, NV

(January 1991).
36. M.S. Tun, S.T.Wu and M. Dryer, J. Comp. Phys., Vol. 116 (1995) p.330.
37. T.J. Poinsot and S.K. Lele, J. of Comp. Physics, Vol. 101 (1992) p.104.
38. R. Hixon and S.-H. Shih, AIAA paper, 95-0160, Reno, NV (1995).
39. T. Hagstrom and S.I. Hariharan, Math. Comput., Vol. 20, No. 10 (1994)

p.155.
40. M.E. Hayder, F.Q. Hu and M.Y. Hussaini, ICASE Report No. 97-25 (also

NASA CR 201689) (May 1997)
41. A. Jameson, AIAA Paper 91-1596, Reno, NV (January 1991).

42. C.L. Merkle and Y. Choi, Intl. J. Num. Meth. Eng., Vol. 25 (1988) p.293.

43. N.D. Melson, M.D. Sanetrik, and H.L. Atkins, 6th Copper Mountain Conf.

on Multigrid Methods, Copper Mountain, CO (April 4-9, 1993).



44. P. Atten and R. Moreau, Journal de Mecanique, Vol. 11, No. 3, September
(1972) p.471.

45. R. Poulter and P.H.G. Allen, 8th Intl. Heat Transfer Conf., San Francisco,
CA, Vol. 6 (1986) p.2963.

46. M. Aoyama, T. Oda, M. Ogihara, Y. Ikegami and S. Mashuda, Journal of
Electrostatics, Vol. 30 (1993) p.247.

47. W. Grassi and P. Di Marco, VII European Symp. on Material and Fluid
Science in Microgravity, Belgium ( 1991).

48. J.S. Newman, Electrochemical systems, Prentice Hall, NJ (1991).
49. R.B. Schilling and H. Schaechter, Journal of Applied Physics, Vol. 38

(1967) p.841.

50. S. Lee, G.S. Dulikravich and B. Kosovic, AIAA paper 91-1469, AIAA
Fluid, Plasma Dynamics and Lasers Conf., Honolulu, HI (June 1991).

51. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover
Publication, Inc., New York (1961).

52. M. Salcudean and P. Sabhapathy, ASME MD-Vol. 20, ASME Book No.
G00552 (1990) p.115.

53. H. Ozoe and K. Okada, International Journal of Heat and Mass Transfer,
Vol. 32, No. 2 (1989) p.1939.

54. S. Lee and G.S. Dulikravich, International Journal for Numerical Methods
in Fluids, Vol. 13, No. 8 (October 1991) p. 917.

55. G.S. Dulikravich, V. Ahuja and S. Lee, Journal of Enhanced Heat
Transfer, Vol. 1, No. 1 (August 1993) p.115.

56. G.S. Dulikravich, K.-Y. Choi and S. Lee, ASME FED-Vol. 205/AMD-
Vol. 190 (1994) p. 125.

57. H. Hatta and S. Yamashita, Journal of Composite Materials, Vol. 22 (May
1988) p.484.

58. G.S. Dulikravich, B. Kosovic and S. Lee, ASME Journal of Heat Transfer,
Vol. 115 (February 1993) p.255.

59. G.S. Dulikravich, V. Ahuja and S. Lee, Numerical Heat Transfer:
Fundamentals, Part B, Vol. 25, No. 3 (1994) p.357.

60. V.R. Voller and C.R. Swaminathan, Numerical Heat Transfer, Part B,
Vol.19 (1991) p.175.

61. D.D. Gray and A. Giorgini, International Journal of Heat and Mass
Transfer, Vol. 19 (1976) p.545.


