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A new method has been developed to optimize, in terms of aerodynamic wave drag
minimization, arbitrary (nonaxisymmetric) hypersonic vehicles in modified Newtonian flow, while
maintaining the initial volume and length of the vehicle. This new method utilized either a surface
fitted Fourier series to represent the vehicle's geometry or an independent point-motion algorithm.
In either case, the coefficients of the Fourier series or the spatial locations of the points defining
each cross section were varied and a numerical optimization algorithm based on a quasi-Newton
gradient search concept was used to determine the new optimal configuration. Results indicate a
significant decrease in aerodynamic wave drag for simple and complex geometries at relatively low
CPU costs. In the case of a cone, the results agreed well with known analytical optimum ogive
shapes. The procedure is capable of accepting more complex flow field analysis codes.

Nomenclature

Cp

Cpo
P
P_
M_

0_

Am, Bm
X

y, z
S

Y
A

A
n

M
S
FAC

= surface pressure coefficient

= stagnation pressure coefficient

= static pressure at a point
= free stream static pressure
= free stream Mach number

= angle between free stream and normal to the surface of a vehicle

= coefficients of Fourier trigonometric series for coordinates at cross section i

= Cartesian coordinate along the axis of the body
= Cartesian coordinates of a contour point at cross section i
= body cross section contour-following coordinate

= normalized body cross section contour-following coordinate

= specific heat ratio of the gas
= area of a panel on the body surface

= aerodynamic force applied to a panel

= unit normal to the body surface
= number of terms in the Fourier trigonometric series
= least squares summation
= percentage change in design variable

Subscripts
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= i th cross section of the vehicle

= jth point of a cross section contour

= mth coefficient of a Fourier trigonometric series
= angle between free stream and local body surface normal
= free stream value

Introduction

Although optimization of axisymmetric hypersonic bodies has been accomplished in the
past [1,2], the aerodynamic drag minimization of an arbitrary hypersonic vehicle has not been
attempted [3]. The objective of this paper is to present an optimization procedure for arbitrarily
shaped hypersonic vehicles. While there are certainly some limitations in this paper, including the
choice of flow field solver and non-convergence for some shapes, it demonstrates that optimization
of numerous variables can indeed be done and that this can be applied to complex configurations.

In hypersonic flow (M_ > 5.0), the flow around an object may be modeled using an impact

theory. In this theory, oncoming particles strike, or impact, the surface of the object and impart the
normal component of their momentum to that body. Classical Newtonian theory has been shown
to approach reality when the free stream Mach number approaches infmity and the value of the ratio

of specific heats approaches ? =1 [4]. In the case of lower hypersonic Mach numbers, modified
Newtonian theory has been shown to be quite satisfactory for predicting the aerodynamic forces
and moments on a body [5]. Modified Newtonian theory has the main advantage of being
extremely simple, accurate [6], and fast when faced with the thousands of flow field calculations
needed in an optimization problem of this scope. Because of the use of modified Newtonian
theory, it was implicitly assumed that the flow field was inviscid.

In this study, modified Newtonian impact flow theory was used with a modified
Newtonian constrained search optimization routine [7] to obtain vehicle shapes which had
significantly lower wave drag in inviscid hypersonic flow. In the first pan of the study, cross
section coordinates of the body were represented with curve-fitted Fourier series. Curve-fitted
Chebyshev series [8] were initially considered, but it was found that the Fourier series represented
complex shapes, such as a Space Shuttle configuration, better than the Chebyshev series. The
coefficients of the Fourier series, one set representing the y coordinate and one set for the z
coordinate (Fig. 1), then became the design variables that were fed to the optimization routine. The
optimization routine sequentially perturbed each of the coefficients by a small amount and
determined the new shape that reduced wave drag while keeping the volume and length of the
vehicle constant. In the second pan of the study, the y and z coordinates of the vehicle's cross
section were used as the design variables directly. Again, the optimization routine perturbed
separately each of the coordinates at each of the cross section contour points. Then, it combined
the changes into a new shape with lower wave drag while still honoring the constraints of constant
volume and constant length of the vehicle.

Numerical Models

The first part of this investigation used a least squares Fourier series curve fit to represent
the y and z coordinates of each half cross section, i, that is,

M

Yij = E

rn_]

Ami cos[(m- 1 )r_-i.j] (1)
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M

ZiJ = Z Bmi sin[mrl:s-i,j]

rrlB1

where Si,j is a normalized contour-following coordinate (Fig. 1) such that

_I Si,j__
Si,j = Si,j-I + "_ (Yi,j-Yi,j_l) 2 + (Zi,j-Zi,j.1) 2 and ffi,j

si,jmax

and Ami is determined from the least squares fit of the Fourier series

jmax

as_
Si = ( (Ami cos[(m-1)_gi,j]) - Yi.j) 2 and aAmi - 0.

m=l

j=l

(2)

(3)

(4)

The coefficients Bmi are determined in a similar way. Since it was assumed that the vehicle had a

vertical plane of symmetry, the z-coordinates of the fh'st (j=l) and the last (j=jmax) point of each
half cross section were always zero thus ensuring symmetry across the y-axis.

The local surface pressure coefficient, Cp, ij , was calculated by the use of modified
Newtonian impact flow theory, which states that

Cp,ij : Cpo coS20n,ij (5)

where 0n,ij is the angle between the free stream and the normal to the surface. The stagnation

pressure coefficient, Cpo, is given by

1 7

_ 2_ [(. y+ l -)_--1(_M[)Y---[ - l] (6)
Cpo 7M2 27M2-7 + 1

The pressure on a given segment of the body may then be calculated from the rearranged formula
for Cp.ij , that is

1 M 2
Pij = P**+ _ Cp,ij Y P** ** (7)

The aerodynamic force on each surface panel is found by

A

Fij = " Pij A ij nij (8)

so that the resultant force is obtained by summing up all of the panel forces

Ftotal = Z Fij (9)

Aerodynamic wave drag was then the x-component of the resultant aerodynamic force.



The optimization algorithm perturbed each of the Fourier coefficients to obtain a slightly

different shape. After per_ rbing all of the coefficients and analyzing these new perturbed shapes,
the optimization algorithT_J combined the changes into a new shape that met the constraints of
constant volume and constant length, but which had a reduced aerodynamic wave drag.

The second part of the study was exactly the same as the first except that instead of
working with the Fourier series coefficients we worked with the y and z coordinates of the cross

sections' points directly.

Results

Four test cases were run for each part of this study. They consisted of a straight cone

having circular cross section shapes, a straight cone having a four pointed star as a cross section, a
stubby-wing shaped body and a Space Shuttle-like configuration. All cases were run at an angle of

attack of 0 °, a specific heat ratio of 7 = 1.4 and a free stream Mach number of Moo =10. Notice that

the values for 7 and Moo appear in Cpo which may be factored out of the pressure coefficient ratio.

They affect the numerical amount of drag, but not the qualitative amount of drag. The x-axis for

each case was chosen to coincide with the long axis of the body. The y and z-axes were then
mutually perpendicular to the x-axis.

Fourier Series Algorithm: For the initial part of the study, twenty terms in a Fourier
series for y and z coordinates were used for seven cross sections. Twenty terms were chosen
because of the constraints of computational facilities (an IBM 3090 was used) and because twenty
terms were able to represent the geometries of all four test cases, including the complex Space
Shuttle shape. Only six of the cross sections were allowed to deform; the nose cross section was
kept constant to serve as a tip. Thus there were 6 x 20 x 2 = 240 design variables. Twenty-five
points were used per cross section; thus, the half body was discretized into 6 x 24 = 144 panels.
FAC, the percent perturbation of Ami and Bmi in the optimization algortihm, was set equal to 5%.

For the case of a right circular cone (Fig. 2), after a total of 43 iterations, the program
converged to an ogive configuration that had 47.96% less wave drag than the original conical
configuration. Note that horizontal and vertical symmetry were maintained.

The next shape tested was a four pointed star configuration (Fig. 3). The aerodynamic
wave drag of this shape was reduced by 39.16% after 43 iterations. This case did not converge
due to "fishtailing" of the fins and was terminated just before such fishtailing occurred. Note the
streaking near the nose and the thinning of the points on the last cross section. Also, notice that
vertical and horizontal symmetry was maintained and the fans gave an ogiving contour.

The third shape optimized was that of a "stubby wing" configuration (Fig. 4). The wave
drag was reduced by 64.62% when the algorithm converged after 53 iterations while preserving
the cross-axis symmetry. Again, note the streaking toward the nose and the smooth appearance of
four small fins along the wing tip line.

The fourth test case was that of a Space Shuttle configuration (Fig. 5). After 22 iterations,
the wing surface crossed itself and the process was terminated. Aerodynamic wave drag was
reduced by 18.52%. With careful scrutiny, one can notice that the centerbody has become ogived,
the wing thickness has been reduced, the wing roots have become filleted, and the underside of the
fuselage has been reduced in size.

The convergence histories (Fig. 6) indicate that the general trend is a monotonic decrease in
drag. This trend can also be seen from the drag plot (Fig. 7) which shows the percentage of
original drag remaining at a given iteration number (Table 1).

Point-Motion Algqrithm: For the point-motion algorithm, 21 points per half cross
section were used. Only six cross sections were analyzed due to computer storage limitations.
With only five cross sections being active, this yielded 2 x 5 x 21 = 210 design variables and 5 x
20 =100 surface panels per half cross section. FAC for this algorithm was set to 0.1%.
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Numerical optimization of a straight circular cone resulted in an ogive shape with
axisymmetry successfully maintained. After 49 iterations, the shape converged to that of Fig. 8
with a corresponding decrease in drag of 45.37%.

The second shape was the four pointed star. With the point-motion algorithm, the shape
converged after 35 iterations to that pictured in Fig. 8. There was a reduction of drag of 34.65%.
As in the case of the circular cone, symmetry was maintained across both the y and z-axes. The
resulting shape is very similar to that obtained by the coefficient algorithm. Considerably less
streaking can be seen near the nose of the star, while the fin planforms exibited significant ogiving.

The next shape optimized was the "stubby wing". The fin tips, after 24 iterations, crossed
themselves and the process was terminated. However, a decrease of 40.58% of the original wave
drag was achieved just before the shape cross-over. Note the development of the fins along the
side of the vehicle (Fig. 8) and streaks near the nose, somewhat similar to those developed when
using the coefficient algorithm. Once again, symmetry was maintained.

The final case for the point motion algorithm was the Space Shuttle vehicle (Fig. 8).
Similar to the case in the coefficient algorithm, the wing eventually crossed itself and the run was
terminated. A decrease in drag of 27.38% was found after 16 iterations preceding the cross-over.

For the point-motion algorithm, the convergence histories (Fig. 9) indicate monotonic
decrease in wave drag for all four test configurations. Figure 10 demonstrates the total reduction in
wave drag for the four test configurations when using the point-motion algorithm (Table 2).

A comparison (Figs. 11 and 12) of the numerically optimized ogive shapes with
analytically optimal ogives obtained by Sears and Haack and by yon Karman [9] demonstrates the
reliability and accuracy of the numerical optimization algorithms.

Conclusions

Two procedures, a coefficient algorithm and a point-motion algorithm, for aerodynamically
optimizing aribitrarily shaped hypersonic vehicles have been shown to significantly reduce
aerodynamic wave drag while keeping the vehicle's volume and length constant. Both
formulations are very fast only because a modified Newtonian flow theory was used as the flow
field analysis algorithm. These formulations would be very effective as preliminary design tools
for unconventional hypersonic vehicles. The point motion algorithm can be used to keep parts of
the original vehicle fixed, such as cabin size or wing thickness, during the optimization. More
sophisticated flow field solvers that include viscosity and the effects of heat transfer could be
substituted in place of the modified Newtonian theory during the final stages of the optimization.
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Coefficient Test Case

Cone
Star

Stubby wing
Space Shuttle

Drag Reduction (%)

47.96
39.16

64.62

# of Optimization
Cycles
43
43

53

# of Analysis Calls

10493
10493

12689
18.52 22 5125

Table 1. Drag reduction, number of optimization cycles and analysis calls for the coefficient test
cases that uses Fourier series representation.

Point-Motion Test
Case
Cone
Stai-

Stubby win_

Space Shuttle

Drag Reduction (%)

45.37%

# of Optimization

Cycles
49

34.65 35
40.58 24

27.38 16

# of Analysis Calls

10273
7277
4923

3211

Table 2. Drag reduction, number of optimization cycles and analysis calls for the point-motion test
cases.

j=l

j--jmax

Z

Figure 1. Cross section contour-following coordinate system.



a) initial
b) final

Figure 2. Straight circular cone shape; coefficient algorithm: a) initial shape, b) final shape.

a) initial b) final

Figure 3. Four pointed star shape; coefficient algorithm: a) initial shape, b) final shape.
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a) initial b) final

Figure 4. Stubby wing shape; coefficient algorithm: a) initial shape, b) final shape.

a) initial

b) final

Figure 5. Space Shuttle-like shape; coefficient algorithm: a) initial shape, b) final shape.



355

['ICID_.qS-Ifr_.E_,to-:S.S.Dubi_rav,=_, _as_,n_, D.C..Oz',ooe- 2._-2/..!99"

12-

10-

r

5

l-

2-

-e- Shuttle l
l-N- Stubby wing

i\ I

,_. 1-°°°° I

_' 10 15 20 25 30 35 40 45 50
Iten_tlon number

Figure 6. Convergence histories for four test shapes when using coefficient algorithm;

percentage change in wave drag per iteration.
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Figure 7. Convergence histories for four test shapes when using coefficient algorithm;
total change in wave drag per iteration.
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Figure 9. Convergence histories for four test shapes when using point-motion algorithm;
percentage change in wave drag per iteration.
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Figure 10. Convergence histories for four test shapes when using point-motion algorithm;
total change in wave drag per iteration.
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Figure 12. Comparison of analytically optimized ogives and a numerically optimized ogive using
point-motion algorithm.


