307 research outputs found

    Dust as interstellar catalyst I. Quantifying the chemical desorption process

    Get PDF
    Context. The presence of dust in the interstellar medium has profound consequences on the chemical composition of regions where stars are forming. Recent observations show that many species formed onto dust are populating the gas phase, especially in cold environments where UV and CR induced photons do not account for such processes. Aims. The aim of this paper is to understand and quantify the process that releases solid species into the gas phase, the so-called chemical desorption process, so that an explicit formula can be derived that can be included into astrochemical models. Methods. We present a collection of experimental results of more than 10 reactive systems. For each reaction, different substrates such as oxidized graphite and compact amorphous water ice are used. We derive a formula to reproduce the efficiencies of the chemical desorption process, which considers the equipartition of the energy of newly formed products, followed by classical bounce on the surface. In part II we extend these results to astrophysical conditions. Results. The equipartition of energy describes correctly the chemical desorption process on bare surfaces. On icy surfaces, the chemical desorption process is much less efficient and a better description of the interaction with the surface is still needed. Conclusions. We show that the mechanism that directly transforms solid species to gas phase species is efficient for many reactions.Comment: Accepted for publication in A&

    A review of residual stress analysis using thermoelastic techniques

    No full text
    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained

    Progress in strain monitoring of tapestries

    No full text
    This paper reports interdisciplinary research between conservators and engineers designed to enhance the long-term conservation of tapestries (tapestry-weave hangings) on longterm display. The aim is to monitor, measure and document the strain experienced by different areas of a tapestry while it is hanging on display. Initial research has established that damage can be identified in the early stages of its inception, i.e., before it is visible to the naked eye. The paper also reports initial results of strain data visualisation that allows curators and conservators to examine how strain develops, thereby facilitating predictions about the changes in the form or condition of the tapestry. Strain data visualisation also allows the strain process to be recorded, thereby facilitating the effective documentation of display methods and conservation interventions. The paper reports the use of point measurements (using silica optical fibre sensors) and full-field monitoring (using 3-D photogrammetry with digital image correlation (DIC))

    Photoassociative creation of ultracold heteronuclear 6Li40K* molecules

    Full text link
    We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and rotational constants are derived. We find large molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be comparable to those for homonuclear 40K_2*. Using a theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational level X^1\Sigma^+(v'=3) of ~5x10^4s^(-1). Our results pave the way for the production of ultracold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole moment.Comment: 6 pages, 4 figures, submitted to EP

    Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    Full text link
    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of RAIRS and temperature-programmed desorption spectra of O2 and O3 produced via two pathways: O + O and O2 + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O2 + O reactions is 150 K/kb. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley Rideal nor the Hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O3 formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O3 is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO2 and H2O in the ices.Comment: 28 pages, 14 figure

    High-resolution spectroscopy of triplet states of Rb2 by femtosecond pump-probe photoionization of doped helium nanodroplets

    Full text link
    The dynamics of vibrational wave packets in triplet states of rubidium dimers (Rb2) formed on helium nanodroplets are studied using femtosecond pump-probe photoionization spectroscopy. Due to fast desorption of the excited Rb2 molecules off the droplets and due to their low internal temperature, wave packet oscillations can be followed up to very long pump-probe delay times >1.5ns. In the first excited triplet state (1)^3\Sigma_g^+, full and fractional revivals are observed with high contrast. Fourier analysis provides high-resolution vibrational spectra which are in excellent agreement with ab initio calculations

    Strain monitoring of tapestries: results of a three-year research project

    Get PDF
    The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain

    Experimental study of the binding energy of NH3 on different types of ice and its impact on the snow line of NH3 and H2O

    Full text link
    N-bearing molecules (like N2H+ or NH3) are excellent tracers of high-density, low-temperature regions like dense cloud cores and could shed light into snowlines in protoplanetary disks and the chemical evolution of comets. However, uncertainties exist about the grain surface chemistry of these molecules -- which could play an important role in their formation and evolution. This study explores experimentally the behaviour of NH3_3 on surfaces mimicking grains under interstellar conditions alongside other major interstellar ice components (ie. H2_2O, CO, CO2_2). We performed co-deposition experiments using the Ultra High Vacuum (UHV) setup VENUS (VErs des NoUvelles Syntheses) of NH3_3 along with other adsorbates (here, H2_2O, 13^{13}CO and CO2_2) and performed Temperature Programmed Desorption (TPD) and Temperature Programmed-During Exposure Desorption (TP-DED) experiments. We obtained binding Energy (BE) distribution of NH3_3 on Crystalline Ice(CI) and compact-Amorphous Solid Water (c-ASW) by analyses of the TPD profiles of NH3 on the substrates. We observe a significant delay in the desorption and a decrease in the desorption rate of NH3_3 when H2_2O is introduced into the co-deposited mixture of NH3_3-13^{13}Co or NH3_3-CO2_2, absent without H2_2O. Secondly, H2_2O traps nearly 5-9 per cent of the co-deposited NH3, released during water's amorphous-to-crystalline phase change. Thirdly, for CI, we obtained a BE distribution between 3780K-4080K, and c-ASW between 3780K-5280K -- using a pre-exponential factor A = 1.94×1015\times 10^{15}/s. We conclude that NH3_3 behaviour is significantly influenced by the presence of H2_2O due to the formation of hydrogen bonds, in line with quantum calculations. This interaction preserves NH3_3 on grain surfaces to higher temperatures making it available to the central protostar in protoplanetary disks. It also explains why NH3_3 freeze out in pre-stellar cores is efficient
    corecore