40 research outputs found
BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana
BRCA1 is a well-known tumor suppressor protein in mammals, involved in multiple cellular processes such as DNA repair, chromosome segregation and chromatin remodeling. Interestingly, homologs of BRCA1 and several of its complex partners are also found in plants. As the respective mutants are viable, in contrast to mammalian mutants, detailed analyses of their biological role is possible. Here we demonstrate that the model plant Arabidopsis thaliana harbors two homologs of the mammalian BRCA1 interaction partner BRCC36, AtBRCC36A and AtBRCC36B. Mutants of both genes as well as the double mutants are fully fertile and show no defects in development. We were able to show that mutation of one of the homologs, AtBRCC36A, leads to a severe defect in intra- and interchromosomal homologous recombination (HR). A HR defect is also apparent in Atbrca1 mutants. As the Atbrcc36a/Atbrca1 double mutant behaves like the single mutants of AtBRCA1 and AtBRCC36A both proteins seem to be involved in a common pathway in the regulation of HR. AtBRCC36 is also epistatic to AtBRCA1 in DNA crosslink repair. Upon genotoxic stress, AtBRCC36A is transferred into the nucleus
A Critical Assessment of 60 Years of Maize Intragenic Recombination
Until the mid-1950s, it was believed that genetic crossovers did not occur within genes. Crossovers occurred between genes, the ābeads on a stringā model. Then in 1956, Seymour Benzer published his classic paper describing crossing over within a gene, intragenic recombination. This result from a bacteriophage gene prompted Oliver Nelson to study intragenic recombination in the maize Waxy locus. His studies along with subsequent work by others working with maize and other organisms described the outcomes of intragenic recombination and provided some of the earliest evidence that genes, not intergenic regions, were recombination hotspots. High-throughput genotyping approaches have since replaced single gene intragenic studies for characterizing the outcomes of recombination. These large-scale studies confirm that genes, or more generally genic regions, are the most active recombinogenic regions, and suggested a pattern of crossovers similar to the budding yeast Saccharomyces cerevisiae. In S. cerevisiae recombination is initiated by double-strand breaks (DSBs) near transcription start sites (TSSs) of genes producing a polarity gradient where crossovers preferentially resolve at the 5ā² end of genes. Intragenic studies in maize yielded less evidence for either polarity or for DSBs near TSSs initiating recombination and in certain respects resembled Schizosaccharomyces pombe or mouse. These different perspectives highlight the need to draw upon the strengths of different approaches and caution against relying on a single model system or approach for understanding recombination
IER2-induced senescence drives melanoma invasion through osteopontin
Expression of the immediate-early response gene IER2 has been associated with the progression of several types of cancer, but its functional role is poorly understood. We found that increased IER2 expression in human melanoma is associated with shorter overall survival, and subsequently investigated the mechanisms through which IER2 exerts this effect. In experimental melanoma models, sustained expression of IER2 induced senescence in a subset of melanoma cells in a p53/MAPK/AKT-dependent manner. The senescent cells produced a characteristic secretome that included high levels of the extracellular phosphoglycoprotein osteopontin. Nuclear localization of the IER2 protein was critical for both the induction of senescence and osteopontin secretion. Osteopontin secreted by IER2-expressing senescent cells strongly stimulated the migration and invasion of non-senescent melanoma cells. Consistently, we observed coordinate expression of IER2, p53/p21, and osteopontin in primary human melanomas and metastases, highlighting the pathophysiological relevance of IER2-mediated senescence in melanoma progression. Together, our study reveals that sustained IER2 expression drives melanoma invasion and progression through stimulating osteopontin secretion via the stochastic induction of senescence
BRCC36A is epistatic to BRCA1 in DNA crosslink repair and homologous recombination in Arabidopsis thaliana
BRCA1 is a well-known tumor suppressor protein in mammals, involved in multiple cellular processes such as DNA repair, chromosome segregation and chromatin remodeling. Interestingly, homologs of BRCA1 and several of its complex partners are also found in plants. As the respective mutants are viable, in contrast to mammalian mutants, detailed analyses of their biological role is possible. Here we demonstrate that the model plant Arabidopsis thaliana harbors two homologs of the mammalian BRCA1 interaction partner BRCC36, AtBRCC36A and AtBRCC36B. Mutants of both genes as well as the double mutants are fully fertile and show no defects in development. We were able to show that mutation of one of the homologs, AtBRCC36A, leads to a severe defect in intra- and interchromosomal homologous recombination (HR). A HR defect is also apparent in Atbrca1 mutants. As the Atbrcc36a/Atbrca1 double mutant behaves like the single mutants of AtBRCA1 and AtBRCC36A both proteins seem to be involved in a common pathway in the regulation of HR. AtBRCC36 is also epistatic to AtBRCA1 in DNA crosslink repair. Upon genotoxic stress, AtBRCC36A is transferred into the nucleus
Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cellācell communication. Up to now, several signals, which coordinate the antherĀ“s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal
RAD5A, RECQ4A, and MUS81 Have Specific Functions in Homologous Recombination and Define Different Pathways of DNA Repair in Arabidopsis thaliana[W]
The processing of complex DNA intermediates in replication and repair is essential. This work defines the role of two ATPases, RAD5A and RECQ4A, and the endonuclease MUS81 in DNA repair and recombination in Arabidopsis. It shows that all three proteins are involved in different pathways of DNA repair and have specific roles in double-strand breakāinduced homologous recombination