3,696 research outputs found

    The 1984 NASA/ASEE summer faculty fellowship program

    Get PDF
    An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy

    Principles of Semiconductor Surface Reconstruction

    Get PDF
    Semiconductor surfaces are known to reconstruct, i.e., their surface atomic geometries differ from those of the corresponding surface planes in the bulk material. For clean tetrahedrally coordinated semiconductors, these reconstructed geometries are shown to be predicted by five simple principles. These principles are illustrated by the specific examples of Si(100)-(2x1), Si(111)-(2x1), GaAs(100)-c(2x8), GaAs(111)-(2x2), and relaxed zincblende (110) surfaces. The concept of universal (i.e., material independent) semiconductor surface structures is introduced and shown to be characteristic of the cleavage surfaces of tetrahedrally coordinated compound semiconductors. The role of scanning tunneling microscopy in identifying and validating these principles is highlighted

    Tunneling Anisotropic Magnetoresistance of Helimagnet Tunnel Junctions

    Full text link
    We theoretically investigate the angular and spin dependent transport in normal-metal/helical-multiferroic/ferromagnetic heterojunctions. We find a tunneling anisotropic magnetoresistance (TAMR) effect due to the spiral magnetic order in the tunnel junction and to an effective spin-orbit coupling induced by the topology of the localized magnetic moments in the multiferroic spacer. The predicted TAMR effect is efficiently controllable by an external electric field due to the magnetoelectric coupling

    Spin-polarized tunneling through randomly transparent magnetic junctions: Reentrant magnetoresistance approaching the Julliere limit

    Get PDF
    Electron conductance in planar magnetic tunnel junctions with long-range barrier disorder is studied within Glauber-eikonal approximation enabling exact disorder ensemble averaging by means of the Holtsmark-Markov method. This allows us to address a hitherto unexplored regime of the tunneling magnetoresistance effect characterized by the crossover from momentum-conserving to random tunneling as a function of the defect concentration. We demonstrate that such a crossover results in a reentrant magnetoresistance: It goes through a pronounced minimum before reaching disorder- and geometry-independent Julliere's value at high defect concentrations.Comment: 7 pages, 5 figures, derivation of Eq. (39) added, errors in Ref. 7 correcte

    Impurity-induced tuning of quantum well states in spin-dependent resonant tunneling

    Full text link
    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWS) which depends on the impurity potential, impurity position and the symmetry of the QWS.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Surface nano-patterning through styrene adsorption on Si(100)

    Full text link
    We present an ab initio study of the structural and electronic properties of styrene molecules adsorbed on the dimerized Si(100) surface at different coverages, ranging from the single-molecule to the full monolayer. The adsorption mechanism primarily involves the vinyl group via a [2+2] cycloaddition process that leads to the formation of covalent Si-C bonds and a local surface derelaxation, while it leaves the phenyl group almost unperturbed. The investigation of the functionalized surface as a function of the coverage (e.g. 0.5 -- 1 ML) and of the substrate reconstruction reveals two major effects. The first results from Si dimer-vinyl interaction and concerns the controlled variation of the energy bandgap of the interface. The second is associated to phenyl-phenyl interactions, which gives rise to a regular pattern of electronic wires at surface, stemming from the pi-pi coupling. These findings suggest a rationale for tailoring the surface nano-patterning of the surface, in a controlled way.Comment: 19 pages (preprint), 4 figures, supplementary materia

    High-frequency spin valve effect in ferromagnet-semiconductor-ferromagnet structure based on precession of injected spins

    Full text link
    New mechanism of magnetoresistance, based on tunneling-emission of spin polarized electrons from ferromagnets (FM) into semiconductors (S) and precession of electron spin in the semiconductor layer under external magnetic field, is described. The FM-S-FM structure is considered, which includes very thin heavily doped (delta-doped) layers at FM-S interfaces. At certain parameters the structure is highly sensitive at room-temperature to variations of the field with frequencies up to 100 GHz. The current oscillates with the field, and its relative amplitude is determined only by the spin polarizations of FM-S junctions at relatively large bias voltage.Comment: 5 pages, 2 figures, (v2) new plot with a dependence of current J on magnetic field H added in Fig.2 (top panel), minor amendments in the text; (v3) minor typos corrected. To appear in Phys. Rev. Letter

    Tunnel junctions of unconventional superconductors

    Full text link
    The phenomenology of Josephson tunnel junctions between unconventional superconductors is developed further. In contrast to s-wave superconductors, for d-wave superconductors the direction dependence of the tunnel matrix elements that describe the barrier is relevant. We find the full I-V characteristics and comment on the thermodynamical properties of these junctions. They depend sensitively on the relative orientation of the superconductors. The I-V characteristics differ from the normal s-wave RSJ-like behavior.Comment: 4 pages, revtex, 4 (encapsulated postscript) figures (figures replaced

    General aviation piston-engine exhaust emission reduction

    Get PDF
    To support the promulgation of aircraft regulations, two airports were examined, Van Nuys and Tamiami. It was determined that the carbon monoxide (CO) emissions from piston-engine aircraft have a significant influence on the CO levels in the ambient air in and around airports, where workers and travelers would be exposed. Emissions standards were set up for control of emissions from aircraft piston engines manufactured after December 31, 1979. The standards selected were based on a technologically feasible and economically reasonable control of carbon monoxide. It was concluded that substantial CO reductions could be realized if the range of typical fuel-air ratios could be narrowed. Thus, improvements in fuel management were determined as reasonable controls

    Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions

    Full text link
    Application of Bardeen's tunneling theory to magnetic tunnel junctions having a general degree of atomic disorder reveals the close relationship between magneto-conduction and voltage-driven pseudo-torque, as well as the thickness dependence of tunnel-polarization factors. Among the results: 1) The torque generally varies as sin theta at constant applied voltage. 2) Whenever polarization factors are well defined, the voltage-driven torque on each moment is uniquely proportional to the polarization factor of the other magnet. 3) At finite applied voltage, this relation predicts significant voltage-asymmetry in the torque. For one sign of voltage the torque remains substantial even when the magnetoconductance is greatly diminished. 4) A broadly defined junction model, called ideal middle, allows for atomic disorder within the magnets and F/I interface regions. In this model, the spin dependence of a state-weighting factor proportional to the sum over general state index of evaluated within the (e.g. vacuum) barrier generalizes the local state density in previous theories of the tunnel-polarization factor. 5) For small applied voltage, tunnel-polarization factors remain legitimate up to first order in the inverse thickness of the ideal middle. An algebraic formula describes the first-order corrections to polarization factors in terms of newly defined lateral auto-correllation scales.Comment: This version no. 3 is thoroughly revised for clarity. Just a few notations and equations are changed, and references completed. No change in results. 17 pages including 4 figure
    • …
    corecore