56 research outputs found

    Layout of Graphs with Bounded Tree-Width

    Full text link
    A \emph{queue layout} of a graph consists of a total order of the vertices, and a partition of the edges into \emph{queues}, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line grid) drawing} of a graph represents the vertices by points in Z3\mathbb{Z}^3 and the edges by non-crossing line-segments. This paper contributes three main results: (1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a graph GG is closely related to the queue-number of GG. In particular, if GG is an nn-vertex member of a proper minor-closed family of graphs (such as a planar graph), then GG has a O(1)×O(1)×O(n)O(1)\times O(1)\times O(n) drawing if and only if GG has O(1) queue-number. (2) It is proved that queue-number is bounded by tree-width, thus resolving an open problem due to Ganley and Heath (2001), and disproving a conjecture of Pemmaraju (1992). This result provides renewed hope for the positive resolution of a number of open problems in the theory of queue layouts. (3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n) volume. This is the most general family of graphs known to admit three-dimensional drawings with O(n) volume. The proofs depend upon our results regarding \emph{track layouts} and \emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October 2002. This paper incorporates the following conference papers: (1) Dujmovic', Morin & Wood. Path-width and three-dimensional straight-line grid drawings of graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts, tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS 2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of kk-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200

    On obstacle numbers

    Get PDF
    The obstacle number is a new graph parameter introduced by Alpert, Koch, and Laison (2010). Mukkamala et al. (2012) show that there exist graphs with n vertices having obstacle number in Ω(n/ log n). In this note, we up this lower bound to Ω(n/(log log n)2). Our proof makes use of an upper bound of Mukkamala et al. on the number of graphs having obstacle number at most h in such a way that any subsequent improvements to their upper bound will improve our lower bound

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar

    A linear-time algorithm for finding a complete graph minor in a dense graph

    Full text link
    Let g(t) be the minimum number such that every graph G with average degree d(G) \geq g(t) contains a K_{t}-minor. Such a function is known to exist, as originally shown by Mader. Kostochka and Thomason independently proved that g(t) \in \Theta(t*sqrt{log t}). This article shows that for all fixed \epsilon > 0 and fixed sufficiently large t \geq t(\epsilon), if d(G) \geq (2+\epsilon)g(t) then we can find this K_{t}-minor in linear time. This improves a previous result by Reed and Wood who gave a linear-time algorithm when d(G) \geq 2^{t-2}.Comment: 6 pages, 0 figures; Clarification added in several places, no change to arguments or result

    Crossings in grid drawings

    Get PDF
    We prove tight crossing number inequalities for geometric graphs whose vertex sets are taken from a d-dimensional grid of volume N and give applications of these inequalities to counting the number of crossing-free geometric graphs that can be drawn on such grids. In particular, we show that any geometric graph with m ≥ 8N edges and with vertices on a 3D integer grid of volume N, has Ω((m2/N) log(m/N)) crossings. In d-dimensions, with d ≥ 4, this bound becomes Ω(m2/N). We provide matching upper bounds for all d. Finally, for d ≥ 4 the upper bound implies that the maximum number of crossing-free geometric graphs with vertices on some d-dimensional grid of volume N is NΘ(N). In 3 dimensions it remains open to improve the trivial bounds, namely, the 2Ω(N) lower bound and the NO(N) upper bound

    An Improved Bound for First-Fit on Posets Without Two Long Incomparable Chains

    Full text link
    It is known that the First-Fit algorithm for partitioning a poset P into chains uses relatively few chains when P does not have two incomparable chains each of size k. In particular, if P has width w then Bosek, Krawczyk, and Szczypka (SIAM J. Discrete Math., 23(4):1992--1999, 2010) proved an upper bound of ckw^{2} on the number of chains used by First-Fit for some constant c, while Joret and Milans (Order, 28(3):455--464, 2011) gave one of ck^{2}w. In this paper we prove an upper bound of the form ckw. This is best possible up to the value of c.Comment: v3: referees' comments incorporate

    Nonrepetitive colourings of planar graphs with O(log n) colours

    Get PDF
    A vertex colouring of a graph is nonrepetitive if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The nonrepetitive chromatic number of a graph G is the minimum integer k such that G has a nonrepetitive k-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n−−√) for n-vertex planar graphs. We prove a O(logn) upper bound

    Every Large Point Set contains Many Collinear Points or an Empty Pentagon

    Get PDF
    We prove the following generalised empty pentagon theorem: for every integer 2\ell \geq 2, every sufficiently large set of points in the plane contains \ell collinear points or an empty pentagon. As an application, we settle the next open case of the "big line or big clique" conjecture of K\'ara, P\'or, and Wood [\emph{Discrete Comput. Geom.} 34(3):497--506, 2005]

    Nonrepetitive Colouring via Entropy Compression

    Full text link
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path whose first half receives the same sequence of colours as the second half. A graph is nonrepetitively kk-choosable if given lists of at least kk colours at each vertex, there is a nonrepetitive colouring such that each vertex is coloured from its own list. It is known that every graph with maximum degree Δ\Delta is cΔ2c\Delta^2-choosable, for some constant cc. We prove this result with c=1c=1 (ignoring lower order terms). We then prove that every subdivision of a graph with sufficiently many division vertices per edge is nonrepetitively 5-choosable. The proofs of both these results are based on the Moser-Tardos entropy-compression method, and a recent extension by Grytczuk, Kozik and Micek for the nonrepetitive choosability of paths. Finally, we prove that every graph with pathwidth kk is nonrepetitively O(k2)O(k^{2})-colourable.Comment: v4: Minor changes made following helpful comments by the referee

    A Center Transversal Theorem for Hyperplanes and Applications to Graph Drawing

    No full text
    Motivated by an open problem from graph drawing, we study several partitioning problems for line and hyperplane arrangements. We prove a ham-sandwich cut theorem: given two sets of n lines in ℝ2, there is a line ℓ such that in both line sets, for both halfplanes delimited by ℓ, there are √n lines which pairwise intersect in that halfplane, and this bound is tight; a centerpoint theorem: for any set of n lines there is a point such that for any halfplane containing that point there are √n/3 of the lines which pairwise intersect in that halfplane. We generalize those results in higher dimension and obtain a center transversal theorem, a same-type lemma, and a positive portion Erdo{double acute}s-Szekeres theorem for hyperplane arrangements. This is done by formulating a generalization of the center transversal theorem which applies to set functions that are much more general than measures. Back to graph drawing (and in the plane), we completely solve the open problem that motivated our search: there is no set of n labeled lines that are universal for all n-vertex labeled planar graphs. In contrast, the main result by Pach and Toth (J. Graph Theory 46(1):39-47, 2004), has, as an easy consequence, that every set of n (unlabeled) lines is universal for all n-vertex (unlabeled) planar graphs. © 2012 Springer Science+Business Media, LLC.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore