16 research outputs found

    Modelling the long-term energy transition in different regions of the world, consideration of different region-specific data

    Get PDF
    This research presents the results of energy transition pathways in the different world regions. These regions are differentiated in the aspects of the availability of resources, different demand levels and distributions as well the different hourly distributions of the availability of renewable energy. Also, the differences in the regions are presented throughout different energy transition policies that are implemented. In order to model the specifics of interactions between the renewable energy generation and power to X technologies, the process of interlinking the outputs from EnergyPLAN simulations with the WILIAM (Within Limit Integrated Assessment Model) was developed. The ranges of simulations are run in EnergyPLAN and the method of regression is used to create simple relations between input and output values. Furthermore, an additional step of input data normalization was developed to speed-up the process of conducting the simulations. The research focusses on the differences in the resulting curves for relations of the flexibility technology application levels and capacity factors of variable generation. Also, the curves resulting from regression approach are compared as well as the results of implementation in WILIAM. Preliminary results show the differences in transition pathways with the regions predominantly located in the north or south focussing more on the implementation of wind and offshore wind energy, while the regions located closer to the equator such as India opting more for solar based energy systems

    Modelling the long-term dynamics of the energy transition accounting for socioeconomic behaviour and biophysical constraints: overview of the Wiliam Energy Module

    Get PDF
    WILIAM (Within Limit Integrated Assessment Model) is a global multiregional IAM that combines economic, social, demographic, environmental, energy and material related aspects into one system dynamics model. It aims to provide stakeholders with an open source, welldocumented model to assess the feasibility, effectiveness, costs and impacts of different sustainability policy options. The adequate representation of energy production is key to assess future sustainability pathways. The main function of the developed energy module is to estimate the primary energy requirements and related GHG emissions for satisfying the economic demand. This goal was achieved by 7 major sub-modules: (1) End-use: translates the economic demand into final energy demand through a hybrid approach combining bottom-up with energy intensities for different sectors. (2) Energy transformation: maps the entire energy conversion chain from final to primary energy, including intermediary energy commodities and an allocation function for power plant utilization. (3) Energy capacity: keeps track of the current power plant capacity stock, decommissioning of expired capacities, as well as the build-up of new capacities. An allocation function for choosing the suitable technology types for new capacities stands at the core of this sub-module. (4) Computation of the EROI of green technologies (5) Variability and storage: keeps track of sub-annual time scale effects on annual energy balances depending on the current power system setup (DSM, Storage, sector coupling). (6) Consideration of techno-sustainable potentials of RES considering geographical, resource and Energy Return on Energy Investment (EROI) constraints. (7) Computation of the energy-related GHG emissions

    A long-term capacity investment and operational energy planning model with power-to-X and flexibility technologies

    Get PDF
    In this research, we present a new long-term energy planning model that considers endogenous capacity investment, energy dispatch, Power-to-X, and demand response technologies. A thorough literature review of existing energy planning models is also presented, allowing to present the distinctive characteristics of the proposed model. The proposed model considers an energy system with the objective of minimizing the total capacity investment cost, throughout all technologies, and the operational cost faced by the system in satisfying energy demand. The model also considers the links among different demand sectors, including the links between the electricity, industry, heat, transport, and electro-fuels (e.g., Hydrogen) sectors. The proposed model is used to study the decarbonization of the Croatian energy system under distinct policies associated to RES levels and CO2 emissions goals. We demonstrate that Power-to-X technologies can certainly provide the flexibility that is required by new capacity investments in variable renewable energy sources, obtaining systems with lesser levels of critical excess of energy production. Higher usage of battery storage and Power-to-heat technologies are adopted primarily for variable renewable shares and CO2 reductions of close to 80%, while below such levels, the adoption of such technologies is limited. Additionally, Power-to-heat flexibility options become the major technologies when limits on CO2 emissions from the heating sector are imposed and, particularly, when the variable renewable energy shares in the electricity sector gets close to levels of 60%.s

    Research frontiers in sustainable development of energy, water and environment systems in a time of climate crisis

    No full text
    Sustainable energy conversion and management processes increasingly require an integrated approach, especially in the context of addressing the climate crisis. This editorial puts forth related research frontiers based on 28 research articles of the special issue that is dedicated to the 13th Conference on Sustainable Development of Energy, Water and Environment Systems and regional series based on the 1st Latin American and 3rd South East European Conferences. Seven research frontiers are reviewed, the first three of which are (i) sustainable technologies for local energy systems, (ii) energy storage and advances in flexibility and (iii) solar energy penetration across multiple sectors. These research frontiers contain contributions based on renewable energy for wastewater treatment in islands, energy savings across urban built infrastructure, advanced district heating and cooling networks, power-to-gas and hydrogen production technologies, demand response in industrial systems, hybrid thermal energy storage, hybrid solar energy power plants, novel photovoltaic thermal technologies, and improved solar energy dispatchability. The research frontiers continue with (iv) wind, water based energy and the energy-water nexus, (v) effective valorization and upgrading of resources, (vi) combustion processes and better utilization of heat and (vii) carbon capture, storage and utilization. Significant contributions include innovative wind and hydrokinetic turbines, osmotic power technologies, synergetic solutions for water desalination, efficient catalytic pyrolysis, upgrading to reduce particle pollution, co-processing for alternative fuels, combustion characterization, electricity generation from waste heat sources, advances in heat exchangers and heat transfer, oxy-fuel combustion, post-combustion capture, and fly ash recycling for energy storage material. The research frontiers in this editorial provide ample opportunities to support societal transformations in the next decades to sustain planetary life-support systems. - 2019 Elsevier LtdScopu
    corecore