12 research outputs found

    De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis

    Get PDF
    We previously established the contribution of de novo damaging sequence variants to Tourette disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated in TD patients are enriched for those related to cell polarity, suggesting a common pathway underlying pathobiology; and we confirm a statistically significant excess of de novo copy number variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD and obsessive-compulsive disorder and de novo copy number variants between TD and autism spectrum disorder, consistent with shared genetic risk

    Rare X-linked variants carry predominantly male risk in autism, Tourette syndrome, and ADHD

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Autism spectrum disorder (ASD), Tourette syndrome (TS), and attention-deficit/hyperactivity disorder (ADHD) display strong male sex bias, due to a combination of genetic and biological factors, as well as selective ascertainment. While the hemizygous nature of chromosome X (Chr X) in males has long been postulated as a key point of “male vulnerability”, rare genetic variation on this chromosome has not been systematically characterized in large-scale whole exome sequencing studies of “idiopathic” ASD, TS, and ADHD. Here, we take advantage of informative recombinations in simplex ASD families to pinpoint risk-enriched regions on Chr X, within which rare maternally-inherited damaging variants carry substantial risk in males with ASD. We then apply a modified transmission disequilibrium test to 13,052 ASD probands and identify a novel high confidence ASD risk gene at exome-wide significance (MAGEC3). Finally, we observe that rare damaging variants within these risk regions carry similar effect sizes in males with TS or ADHD, further clarifying genetic mechanisms underlying male vulnerability in multiple neurodevelopmental disorders that can be exploited for systematic gene discovery.This study was supported by grants from the National Institute of Mental Health to A.J.W. and M.W.S (R01MH115963), A.J.W. (R01NS105746), G.A.H. and J.A.T. (R01MH115958), Alyssa Rosen (R01MH115960), Donald L. Gilbert (R01MH115962), Samuel Kuperman (R01MH115961), Samuel H. Zinner (R01MH115993), Barbara J. Coffey (R01MH115959), B.W. (R25MH06048); from the Tourette Association of America to A.J.W. (Young Investigator Award); from the Human Genetics Institute of New Jersey to G.A.H. and J.A.T.; and the New Jersey Center for Tourette Syndrome and Associated Disorders (NJCTS) to G.A.H. and J.A.T.Peer reviewe

    Whole‐Brain Image Analysis and Anatomical Atlas 3D Generation Using MagellanMapper

    No full text
    MagellanMapper is a software suite designed for visual inspection and end-to-end automated processing of large-volume, 3D brain imaging datasets in a memory-efficient manner. The rapidly growing number of large-volume, high-resolution datasets necessitates visualization of raw data at both macro- and microscopic levels to assess the quality of data, as well as automated processing to quantify data in an unbiased manner for comparison across a large number of samples. To facilitate these analyses, MagellanMapper provides both a graphical user interface for manual inspection and a command-line interface for automated image processing. At the macroscopic level, the graphical interface allows researchers to view full volumetric images simultaneously in each dimension and to annotate anatomical label placements. At the microscopic level, researchers can inspect regions of interest at high resolution to build ground truth data of cellular locations such as nuclei positions. Using the command-line interface, researchers can automate cell detection across volumetric images, refine anatomical atlas labels to fit underlying histology, register these atlases to sample images, and perform statistical analyses by anatomical region. MagellanMapper leverages established open-source computer vision libraries and is itself open source and freely available for download and extension. © 2020 Wiley Periodicals LLC. Basic Protocol 1: MagellanMapper installation Alternate Protocol: Alternative methods for MagellanMapper installation Basic Protocol 2: Import image files into MagellanMapper Basic Protocol 3: Region of interest visualization and annotation Basic Protocol 4: Explore an atlas along all three dimensions and register to a sample brain Basic Protocol 5: Automated 3D anatomical atlas construction Basic Protocol 6: Whole-tissue cell detection and quantification by anatomical label Support Protocol: Import a tiled microscopy image in proprietary format into MagellanMapper
    corecore