22 research outputs found

    Short-term telomere dynamics is associated with glucocorticoid levels in wild populations of roe deer

    Get PDF
    International audienceWhile evidence that telomere length is associated with health and mortality in humans and birds is accumulating, a large body of research is currently seeking to identify factors that modulate telomere dynamics. We tested the hypothesis that high levels of glucocorticoids in individuals under environmental stress should accelerate telomere shortening in two wild populations of roe deer (Capreolus capreolus) living in different ecological contexts. From two consecutive annual sampling sessions, we found that individuals with faster rates of telomere shortening had higher concentrations of fecal glucocorticoid metabolites, suggesting a functional link between glucocorticoid levels and telomere attrition rate. This relationship was consistent for both sexes and populations. This finding paves the way for further studies of the fitness consequences of exposure to environmental stressors in wild vertebrates

    Experimental infection of Artibeus lituratus bats and no detection of Zika virus in neotropical bats from French Guiana, Peru, and Costa Rica suggests a limited role of bats in Zika transmission

    Get PDF
    Author summaryIn previous works in 2008-2009, we found the presence of antibodies against flaviviruses, and viral RNA was detected in Neotropical chiropterans in Mexico, which led us to support the hypothesis that these animals could be reservoirs of flaviviruses. As controversial opinions have been exposed and based on a previous (2019) experimental ZIKV infection experiment conducted at Colorado State University using adult Artibeus males from a captive colony, in this work, we also experimentally infected adult Artibeus males complementarily adding females and using wild-caught animals instead of laboratory bats. We also monitored a diverse range of natural bat populations in Latin America for the presence of viral RNA against ZIKV in blood. A plaque reduction seroneutralization test was used for the detection of antibodies against ZIKV. Similar to the previous work, we found histopathological alterations in male testicles but also in the ovaries and oviducts of females, as well as gliosis and multifocal necrosis in pyramidal neurons and Purkinge cells of inoculated animals. Only two urine samples from inoculated animals showed viral RNA. Additionally, leukopenia and lymphoid follicular splenic hyperplasia were evidenced. In contrast to what was reported, no neutralizing antibodies against ZIKV were detected in any sample. Viral RNA within the blood was not present in any of the 2056 bat samples collected in French Guiana, Peru and Costa Rica and proceeding from 34 bat genera. These results together suggest that bats are not efficient amplifiers or reservoirs of ZIKV and might not have an important role in ZIKV transmission dynamics. Bats are important natural reservoir hosts of a diverse range of viruses that can be transmitted to humans and have been suggested to play an important role in the Zika virus (ZIKV) transmission cycle. However, the exact role of these animals as reservoirs for flaviviruses is still controversial. To further expand our understanding of the role of bats in the ZIKV transmission cycle in Latin America, we carried out an experimental infection in wild-caught Artibeus lituratus bats and sampled several free-living neotropical bats across three countries of the region. Experimental ZIKV infection was performed in wild-caught adult bats (4 females and 5 males). The most relevant findings were hemorrhages in the bladder, stomach and patagium. Significant histological findings included inflammatory infiltrate consisting of a predominance of neutrophils and lymphocytes, in addition to degeneration in the reproductive tract of males and females. This suggests that bat reproduction might be at some level affected by ZIKV. Leukopenia was also observed in some inoculated animals. Hemorrhages, genital alterations, and leukopenia are suggested to be caused by ZIKV; however, since these were wild-caught bats, we cannot exclude other agents. Detection of ZIKV by qPCR was observed at low concentrations in only two urine samples in two inoculated animals. All other animals and tissues tested were negative. Finally, no virus-neutralizing antibodies were found in any animal. To determine ZIKV infection in nature, the blood of a total of 2056 bats was sampled for ZIKV detection by qPCR. Most of the sampled individuals belonged to the genus Pteronotus sp. (23%), followed by the species Carollia sp. (17%), Anoura sp. (14%), and Molossus sp. (13.7%). No sample of any tested species was positive for ZIKV by qPCR. These results together suggest that bats are not efficient amplifiers or reservoirs of ZIKV and may not have an important role in ZIKV transmission dynamics

    Young and mature males have similar energy expenditure during the rut in a trophy-hunted population of Mediterranean mouflon

    No full text
    International audienceIn polygynous ungulates, males invest time and energy to reproductive activities during the rut and this involvement is expected to increase with age due to different mating tactics in young versus adult males. In contrast, mating period is expected to be less costly for females for which late gestation and lactation are the most energetically demanding periods. However, empirical supports of these hypotheses through direct measures of reproductive effort are still limited in ungulate species, particularly in males. In addition, this general pattern may be modified in populations facing selective harvesting on adult males, where young males may experience less competition to mate and invest more energy during the rut. We investigated these hypotheses by studying the age- and sex-specific variations of kidney fat reserves from pre- to post-rut periods in a trophy-hunted population of Mediterranean mouflon (Ovis gmelini musimon × Ovis sp.), a polygynous dimorphic mountain ungulate. Females were found to build up energy from the pre-rut to the post-rut periods, most likely to face with the subsequent costs of gestation/lactation that occur few months later. Conversely, kidney fat mass strongly decreased similarly in both young and mature males, and with the same magnitude, suggesting a strong investment of males of all ages in this population. This might be related to the selective hunting pressure on mature males this population is facing with. This result supports the need for more empirical and comparative studies to better grasp the influence of trophy hunting on reproductive effort in male ungulate

    Breaking down population density into different components to better understand its spatial variation

    No full text
    International audienceAbstract Background Population size and densities are key parameters in both fundamental and applied ecology, as they affect population resilience to density-dependent processes, habitat changes and stochastic events. Efficient management measures or species conservation programs thus require accurate estimates of local population densities across time and space, especially for continuously distributed species. For social species living in groups, population density depends on different components, namely the number of groups and the group size, for which relative variations in space may originate from different environmental factors. Whether resulting spatial variations in density are mostly triggered by one component or the other remains poorly known. Here, we aimed at determining the magnitude of the spatial variation in population densities of a social, group-living species, i.e. the European badger Meles meles , in 13 different sites of around 50 km 2 across France, to decipher whether sett density, group size or proportion of occupied sett variation is the main factor explaining density variation. Besides the intrinsic factors of density variation, we also assessed whether habitat characteristics such as habitat fragmentation, urbanisation, and resource availability, drove both the spatial variation of density components and local population densities. Results We proposed a new standardised approach combining use of multiple methods, namely distance sampling for estimating the density of occupied sett clusters, i.e. group density, and camera and hair trapping for genetic identification to determine the mean social group size. The density of adult badgers was on average 3.8 per km 2 (range 1.7–7.9 per km 2 ) and was positively correlated with the density of sett clusters. The density of adult badgers per site was less related to the social group size or to the proportion of occupied sett clusters. Landscape fragmentation also explained the spatial variation of adult badger density, with highly fragmented landscapes supporting lower adult densities. Density components were linked differently to environmental variables. Conclusions These results underline the need to break down population density estimates into several components in group-living species to better understand the pattern of temporal and spatial variation in population density, as different components may vary due to different ecological factors

    Estimation of Bait Uptake by Badgers, Using Non-invasive Methods, in the Perspective of Oral Vaccination Against Bovine Tuberculosis in a French Infected Area

    No full text
    International audienceAlthough France is officially declared free of bovine tuberculosis (TB), Mycobacterium bovis infection is still observed in several regions in cattle and wildlife, including badgers ( Meles meles ). In this context, vaccinating badgers should be considered as a promising strategy for the reduction in M. bovis transmission between badgers and other species, and cattle in particular. An oral vaccine consisting of live Bacille Calmette–GuĂ©rin (BCG) contained in bait is currently under assessment for badgers, for which testing bait deployment in the field and assessing bait uptake by badgers are required. This study aimed to evaluate the bait uptake by badgers and determine the main factors influencing uptake in a TB-infected area in Burgundy, north-eastern France. The baits were delivered at 15 different setts located in the vicinity of 13 pastures within a TB-infected area, which has been subject to intense badger culling over the last decade. Pre-baits followed by baits containing a biomarker (Rhodamine B; no BCG vaccine) were delivered down sett entrances in the spring (8 days of pre-baiting and 4 days of baiting) and summer (2 days of pre-baiting and 2 days of baiting) of 2018. The consumption of the marked baits was assessed by detecting fluorescence, produced by Rhodamine B, in hair collected in hair traps positioned at the setts and on the margins of the targeted pastures. Collected hairs were also genotyped to differentiate individuals using 24 microsatellites markers and one sex marker. Bait uptake was estimated as the proportion of badgers consuming baits marked by the biomarker over all the sampled animals (individual level), per badger social group, and per targeted pasture. We found a bait uptake of 52.4% (43 marked individuals of 82 genetically identified) at the individual level and a mean of 48.9 and 50.6% at the social group and pasture levels, respectively. The bait uptake was positively associated with the presence of cubs (social group level) and negatively influenced by the intensity of previous trapping (social group and pasture levels). This study is the first conducted in France on bait deployment in a badger population of intermediate density after several years of intensive culling. The results are expected to provide valuable information toward a realistic deployment of oral vaccine baits to control TB in badger populations

    Reproductive females and young mouflon ( Ovis gmelini musimon × Ovis sp.) in poor body condition are the main spreaders of gastrointestinal parasites

    No full text
    Abstract Several individual, environmental and parasitic factors can influence the impacts of parasites on host's fitness and on host's ability to transmit these parasites to new hosts. Identifying these factors and the individuals who play a greater role in parasite transmission is of main concern for the development of parasite control strategies. In the present study, we aimed to describe the diversity of gastrointestinal parasites and to identify the individual factors influencing the faecal spreading of parasites in a free-ranging population of Mediterranean mouflon. From the analysis of 433 faecal samples, we found Eimeria spp. and gastrointestinal strongyles (GIS) were the most common parasites (>94%). The faecal oocyst counts of Eimeria spp. were the highest during the first years of life. It was 1.6 times higher in females than in males and 2.5 times higher in individuals in poor than in good body condition. Similarly, the faecal egg count of GIS was higher in females and decreased with age, but only in males. Finally, reproductive females had GIS faecal egg count values 2.6 times higher than non-reproductive females. Management strategies of parasites should thus primarily focus on reproductive females and young individuals in poor body condition as they represent the main contamination source of the environment

    Population genetic structures at multiple spatial scales: importance of social groups in European badgers

    No full text
    International audienceAbstract Population viability and metapopulation dynamics are strongly affected by gene flow. Identifying ecological correlates of genetic structure and gene flow in wild populations is therefore a major issue both in evolutionary ecology and species management. Studying the genetic structure of populations also enables identification of the spatial scale at which most gene flow occurs, hence the scale of the functional connectivity, which is of paramount importance for species ecology. In this study, we examined the genetic structure of a social, continuously distributed mammal, the European badger (Meles meles), both at large spatial scales (among populations) and fine (within populations) spatial scales. The study was carried out in 11 sites across France utilizing a noninvasive hair trapping protocol at 206 monitored setts. We identified 264 badgers genotyped at 24 microsatellite DNA loci. At the large scale, we observed high and significant genetic differentiation among populations (global Fst = 0.139; range of pairwise Fst [0.046–0.231]) that was not related to the geographic distance among sites, suggesting few large-scale dispersal events. Within populations, we detected a threshold value below which badgers were genetically close (< 400 m), highlighting that sociality is the major structuring process within badger populations at the fine scale

    Both candidate gene and neutral genetic diversity correlate with parasite resistance in female Mediterranean mouflon

    No full text
    Abstract Background Parasite infections can have substantial impacts on population dynamics and are accordingly a key challenge for wild population management. Here we studied genetic mechanisms driving parasite resistance in a large herbivore through a comprehensive approach combining measurements of neutral (16 microsatellites) and adaptive (MHC DRB1 exon 2) genetic diversity and two types of gastrointestinal parasites (nematodes and coccidia). Results While accounting for other extrinsic and intrinsic predictors known to impact parasite load, we show that both neutral genetic diversity and DRB1 are associated with resistance to gastrointestinal nematodes. Intermediate levels of multi-locus heterozygosity maximized nematodes resistance, suggesting that both in- and outbreeding depression might occur in the population. DRB1 heterozygosity and specific alleles effects were detected, suggesting the occurrence of heterozygote advantage, rare-allele effects and/or fluctuating selection. On the contrary, no association was detected between genetic diversity and resistance to coccidia, indicating that different parasite classes are impacted by different genetic drivers. Conclusions This study provides important insights for large herbivores and wild sheep pathogen management, and in particular suggests that factors likely to impact genetic diversity and allelic frequencies, including global changes, are also expected to impact parasite resistance
    corecore