20 research outputs found
Nitrogen Fixation in Mesoscale Eddies of the North Pacific Subtropical Gyre: Patterns and Mechanisms
Mesoscale eddies have been shown to support elevated dinitrogen (N2) fixation rates (NFRs) and abundances of N2-fixing microorganisms (diazotrophs), but the mechanisms underlying these observations are not well understood. We sampled two pairs of mesoscale cyclones and anticyclones in the North Pacific Subtropical Gyre in 2017 and 2018 and compared our observations with seasonal patterns from the Hawaii Ocean Time-series (HOT) program. Consistent with previous reports, we found that NFRs were anomalously high for this region (up to 3.7-fold above previous monthly HOT observations) in the centers of both sampled anticyclones. In 2017, these elevated rates coincided with high concentrations of the diazotroph Crocosphaera. We then coupled our field-based observations, together with transcriptomic analyses of nutrient stress marker genes and ecological models, to evaluate the role of biological (via estimates of growth and grazing rates) and physical controls on populations of Crocosphaera, Trichodesmium, and diatom symbionts at the mesoscale. Our results suggest that increased Crocosphaera abundances in the 2017 anticyclone resulted from the alleviation of phosphate limitation, allowing cells to grow at rates exceeding grazing losses. In contrast, distributions of larger, buoyant taxa (Trichodesmium and diatom symbionts) appeared less affected by eddy-driven biological controls. Instead, they appeared driven by physical dynamics along frontal boundaries that separate cyclonic and anticyclonic eddies. No examined controls were able to explain our 2018 findings of higher NFRs in the anticyclone. A generalized explanation of elevated NFRs in mesoscale eddies remains challenging due to the interplay of eddy-driven bottom-up, top-down, and physical control mechanisms.This work was funded by the Simons Foundation (Award # 721252 to DMK, 721256 to AEW, 721223 to EFD, 721221 to MJC, 721244 to EVA, 721225 to STD, 329108 to SJ, and 724220 to JPZ) and expedition funding from the Schmidt Ocean Institute for R/V Falkor Cruise FK180310 in 2018.Peer reviewe
Nitrogen Fixation in Mesoscale Eddies of the North Pacific Subtropical Gyre: Patterns and Mechanisms
Mesoscale eddies have been shown to support elevated dinitrogen (N2) fixation rates (NFRs) and abundances of N2-fixing microorganisms (diazotrophs), but the mechanisms underlying these observations are not well understood. We sampled two pairs of mesoscale cyclones and anticyclones in the North Pacific Subtropical Gyre in 2017 and 2018 and compared our observations with seasonal patterns from the Hawaii Ocean Time-series (HOT) program. Consistent with previous reports, we found that NFRs were anomalously high for this region (up to 3.7-fold above previous monthly HOT observations) in the centers of both sampled anticyclones. In 2017, these elevated rates coincided with high concentrations of the diazotroph Crocosphaera. We then coupled our field-based observations, together with transcriptomic analyses of nutrient stress marker genes and ecological models, to evaluate the role of biological (via estimates of growth and grazing rates) and physical controls on populations of Crocosphaera, Trichodesmium, and diatom symbionts at the mesoscale. Our results suggest that increased Crocosphaera abundances in the 2017 anticyclone resulted from the alleviation of phosphate limitation, allowing cells to grow at rates exceeding grazing losses. In contrast, distributions of larger, buoyant taxa (Trichodesmium and diatom symbionts) appeared less affected by eddy-driven biological controls. Instead, they appeared driven by physical dynamics along frontal boundaries that separate cyclonic and anticyclonic eddies. No examined controls were able to explain our 2018 findings of higher NFRs in the anticyclone. A generalized explanation of elevated NFRs in mesoscale eddies remains challenging due to the interplay of eddy-driven bottom-up, top-down, and physical control mechanisms.This work was funded by the Simons Foundation (Award # 721252 to DMK, 721256 to AEW, 721223 to EFD, 721221 to MJC, 721244 to EVA, 721225 to STD, 329108 to SJ, and 724220 to JPZ) and expedition funding from the Schmidt Ocean Institute for R/V Falkor Cruise FK180310 in 2018.Peer reviewe
First release of the Pelagic Size Structure database: global datasets of marine size spectra obtained from plankton imaging devices
In marine ecosystems, most physiological, ecological, or physical processes are size dependent. These include metabolic rates, the uptake of carbon and other nutrients, swimming and sinking velocities, and trophic interactions, which eventually determine the stocks of commercial species, as well as biogeochemical cycles and carbon sequestration. As such, broad-scale observations of plankton size distribution are important indicators of the general functioning and state of pelagic ecosystems under anthropogenic pressures. Here, we present the first global datasets of the Pelagic Size Structure database (PSSdb), generated from plankton imaging devices. This release includes the bulk particle normalized biovolume size spectrum (NBSS) and the bulk particle size distribution (PSD), along with their related parameters (slope, intercept, and R2) measured within the epipelagic layer (0–200 m) by three imaging sensors: the Imaging FlowCytobot (IFCB), the Underwater Vision Profiler (UVP), and benchtop scanners. Collectively, these instruments effectively image organisms and detrital material in the 7–10 000 µm size range. A total of 92 472 IFCB samples, 3068 UVP profiles, and 2411 scans passed our quality control and were standardized to produce consistent instrument-specific size spectra averaged to 1° × 1° latitude and longitude and by year and month. Our instrument-specific datasets span most major ocean basins, except for the IFCB datasets we have ingested, which were exclusively collected in northern latitudes, and cover decadal time periods (2013–2022 for IFCB, 2008–2021 for UVP, and 1996–2022 for scanners), allowing for a further assessment of the pelagic size spectrum in space and time. The datasets that constitute PSSdb's first release are available at https://doi.org/10.5281/zenodo.11050013 (Dugenne et al., 2024b). In addition, future updates to these data products can be accessed at https://doi.org/10.5281/zenodo.7998799.</p
Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea
Fine-scale physical structures and ocean dynamics strongly influence and
regulate biogeochemical and ecological processes. These
processes are particularly challenging to describe and understand because of their ephemeral nature. The OSCAHR (Observing
Submesoscale Coupling At High Resolution) campaign was conducted in fall 2015
in which a fine-scale structure (1–10 km∕1–10 days) in the
northwestern Mediterranean Ligurian subbasin was pre-identified using both
satellite
and numerical modeling data. Along the ship track, various variables were measured at the surface (temperature, salinity,
chlorophyll a and nutrient concentrations) with ADCP current velocity. We
also deployed a new model of the CytoSense automated flow cytometer (AFCM)
optimized for small and dim cells, for near real-time characterization of the
surface phytoplankton community structure of surface waters with a spatial
resolution of a few kilometers and an hourly temporal resolution. For the
first time with this optimized
version of the AFCM, we were able to fully resolve Prochlorococcus picocyanobacteria in addition to the easily
distinguishable Synechococcus. The vertical physical dynamics and biogeochemical properties of the studied area were
investigated by continuous high-resolution CTD profiles thanks to a moving vessel profiler (MVP) during the vessel underway
associated with a high-resolution pumping system deployed during fixed
stations allowing sampling of the water column at a fine resolution
(below 1 m). The observed fine-scale feature presented a cyclonic structure with a relatively cold core surrounded by warmer
waters. Surface waters were totally depleted in nitrate and phosphate. In addition to the doming of the isopycnals by the cyclonic
circulation, an intense wind event induced Ekman pumping. The upwelled subsurface cold nutrient-rich water fertilized surface waters
and was marked by an increase in Chl a concentration.
Prochlorococcus and pico- and nano-eukaryotes were more abundant in
cold core waters, while Synechococcus dominated in warm boundary
waters. Nanoeukaryotes were the main contributors ( > 50 %)
in terms of pigment content (red fluorescence) and biomass. Biological observations based on the mean cell's red fluorescence
recorded by AFCM combined with physical properties of surface waters suggest a distinct origin for two warm boundary waters.
Finally, the application of a matrix growth population model based on high-frequency AFCM measurements in warm boundary surface
waters provides estimates of in situ growth rate and apparent net primary production for Prochlorococcus (μ = 0.21 d−1, NPP = 0.11 mg C m−3 d−1) and Synechococcus (μ = 0.72 d−1, NPP = 2.68
mg C m−3 d−1), which corroborate their opposite surface distribution pattern. The innovative adaptive strategy applied
during OSCAHR with a combination of several multidisciplinary and complementary approaches involving high-resolution in situ
observations and sampling, remote-sensing and model simulations provided a deeper understanding of the marine biogeochemical dynamics
through the first trophic levels
Combining laser diffraction, flow cytometry and optical microscopy to characterize a nanophytoplankton bloom in the Northwestern Mediterranean
International audienceThe study of particle size distribution (PSD) gives insights on the dynamics of distinct pools of particles in the ocean, which reflect the functioning of the marine ecosystem and the efficiency of the carbon pump. In this study, we combined continuous particle size estimations and discrete measurements focused on phytoplankton to describe a spring bloom in the North West Mediterranean Sea. During April 2013, about 90 continuous profiles of PSD quantified through in situ laser diffraction and transmissiometry (the Laser in situ Scattering and Transmissiometry Deep (LISST-Deep), Sequoia Sc) were complemented by Niskin bottle samples for flow cytometry analyses, taxonomic identification by optical microscopy and pigments quantification. In the euphotic zone, the PSD shape seen by the LISST was fairly stable with two particle volume peaks covering the 2–11 µm and 15–109 µm size fractions. The first pool strongly co-varied with the chlorophyll fluorescence emitted by phytoplankton cells. In addition, over the 2–11 µm fraction, the LISST derived abundance was highly correlated with the abundance of nanophytoplankton counted by flow cytometry. Microscopy identified a phytoplankton community dominated by nanodiatoms and nanoflagellates. High correlation of LISST derived particle carbon and Particulate Organic Carbon and high nitrogen in the Particulate Organic Matter also supported a dominance of actively growing phytoplankton cells in this pool. The second, broader pool of particles covering sizes 15–109 µm was possibly microflocs coming from rivers and/or sediments. This study demonstrates the complementarity of continuous measurements of PSD combined with discrete measurements to better quantify size, abundance, biomass, and spatial (both vertical and horizontal) distribution of phytoplankton in open ocean environments