78 research outputs found

    Enhanced Phagocytic Activity of HIV-Specific Antibodies Correlates with Natural Production of Immunoglobulins with Skewed Affinity for FcγR2a and FcγR2b

    Get PDF
    While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis—driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response

    Divergent Antibody Subclass and Specificity Profiles but Not Protective HLA-B Alleles Are Associated with Variable Antibody Effector Function among HIV-1 Controllers

    Get PDF
    Understanding the coordination between humoral and cellular immune responses may be the key to developing protective vaccines, and because genetic studies of long-term HIV-1 nonprogressors have associated specific HLA-B alleles with spontaneous control of viral replication, this subject group presents an opportunity to investigate relationships between arms of the adaptive immune system. Given evidence suggesting that cellular immunity may play a role in viral suppression, we sought to determine whether and how the humoral immune response might vary among controllers. Significantly, Fc-mediated antibody effector functions have likewise been associated with durable viral control. In this study, we compared the effector function and biophysical features of HIV-specific antibodies in a cohort of controllers with and without protective HLA-B alleles in order to investigate whether there was evidence for multiple paths to HIV-1 control, or whether cellular and humoral arms of immunity might exhibit coordinated profiles. However, with the exception of IgG2 antibodies to gp41, HLA status was not associated with divergent humoral responses. This finding did not result from uniform antibody responses across subjects, as controllers could be regrouped according to strong differences in their HIV-specific antibody subclass specificity profiles. These divergent antibody profiles were further associated with significant differences in nonneutralizing antibody effector function, with levels of HIV-specific IgG1 acting as the major distinguishing factor. Thus, while HLA background among controllers was associated with minimal differences in humoral function, antibody subclass and specificity profiles were associated with divergent effector function, suggesting that these features could be used to make functional predictions. Because these nonneutralizing antibody activities have been associated with spontaneous viral control, reduced viral load, and nonprogression in infected subjects and protection in vaccinated subjects, understanding the specific features of IgGs with potentiated effector function may be critical to vaccine and therapeutic antibody development

    A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples

    Get PDF
    Phagocytosis can be induced via the engagement of Fcγ receptors by antibody-opsonized material. Furthermore, the efficiency of antibody-induced effector functions has been shown to be dramatically modulated by changes in antibody glycosylation. Because infection can modulate antibody glycans, which in turn modulate antibody functions, assays capable of determining the induction of effector functions rather than neutralization or titer provide a valuable opportunity to more fully characterize the quality of the adaptive immune response. Here we describe a robust and high-throughput flow cytometric assay to define the phagocytic activity of antigen-specific antibodies from clinical samples. This assay employs a monocytic cell line that expresses numerous Fc receptors: including inhibitory and activating, and high and low affinity receptors—allowing complex phenotypes to be studied. We demonstrate the adaptability of this high-throughput, flow-based assay to measure antigen-specific antibody-mediated phagocytosis against an array of viruses, including influenza, HIV, and dengue. The phagocytosis assay format further allows for simultaneous analysis of cytokine release, as well as determination of the role of specific Fcγ-receptor subtypes, making it a highly useful system for parsing differences in the ability of clinical and vaccine induced antibody samples to recruit this critical effector function.Neutralizing Antibody Consortium (International AIDS Vaccine Initiative)National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (AI055332)National Institutes of Health (U.S.) (AI080289)Ragon Institute of MGH, MIT and Harvar

    MHC class I chain-related protein A shedding in chronic HIV-1 infection is associated with profound NK cell dysfunction

    Get PDF
    Natural killer (NK) cells play a critical role in host defense against viral infections. However chronic HIV-1 infection is associated with an accumulation of dysfunctional NK cells, that poorly control viral replication. The underlying mechanisms for this NK cell mediated dysfunction are not understood. Certain tumors evade NK cell mediated detection by dampening NK cell activity through the downregulation of NKG2D, via the release of soluble NKG2D-ligands, resulting in a potent suppression of NK cell function. Here we show that chronic HIV-1 infection is associated with a specific defect in NKG2D-mediated NK cell activation, due to reduced expression and transcription of NKG2D. Reduced NKG2D expression was associated with elevated levels of the soluble form of the NKG2D-ligand, MICA, in patient sera, likely released by HIV+CD4+ T cells. Thus, like tumors, HIV-1 may indirectly suppress NK cell recognition of HIV-1-infected CD4+ T cells by enhancing NKG2D-ligand secretion into the serum resulting in a profound impairment of NK cell function

    Neutralizing anti-HIV antibodies develop in a humanized

    Get PDF
    From AIDS Vaccine 2012, Boston, MA, USA. 9-12 September 2012.Background: In BLT (bone marrow-liver-thymus) humanized mice, human thymocytes are educated by autologous human thymic tissue, resulting in functional human T cells capable of rapidly selecting for CTL escape mutations in HIV. In contrast, limitations to B cell maturation have been noted. But despite this, we show for the first time that HIV infected BLT mice can produce class-switched anti-HIV antibodies with neutralizing activities. Methods: Humanized BLT mice were generated by transplanting irradiated NOD-scid/IL2rgnull (NSG) mice with fetal thymus and liver fragments and then injecting them with autologous human CD34+ stem cells. BLT mice were then infected with HIVJRCSF and bled at various time-points. HIV neutralizing activity was measured using Tat-induced luciferase reporter TZM-bl cells. Results: Human transitional B cells were present in greater frequencies in BLT mice than adult humans. Most of these cells had a T1 phenotype in the blood and spleen. But despite this B cell maturation defect, class-switched IgG Abs against various HIV proteins were detected by Western Blot in HIV-infected BLT mice. Using ELISA to determine anti-p24 IgG Ab titers, Abs were present as early as 8 weeks post infection (p.i.), with peak Ab titers seen after 15 weeks. One infected mouse demonstrated a peak titer similar to that seen in a chronically infected human. Finally, plasma samples from infected BLT mice after 22 weeks p.i. demonstrated neutralizing activities against the challenge virus. Average IC50 neutralizing titers in these mice were similar to those from infected human samples. Conclusion: The ability of humanized BLT mice to generate functional humoral immune responses may be further improved by strategies to improve their B cell maturation, which will further improve the potential of these mice to become a model system to study candidate HIV vaccines and therapies

    Natural Variation in Fc Glycosylation of HIV-Specific Antibodies Impacts Antiviral Activity

    Get PDF
    While the induction of a neutralizing antibody response against HIV remains a daunting goal, data from both natural infection and vaccine-induced immune responses suggest that it may be possible to induce antibodies with enhanced Fc effector activity and improved antiviral control via vaccination. However, the specific features of naturally induced HIV-specific antibodies that allow for the potent recruitment of antiviral activity and the means by which these functions are regulated are poorly defined. Because antibody effector functions are critically dependent on antibody Fc domain glycosylation, we aimed to define the natural glycoforms associated with robust Fc-mediated antiviral activity. We demonstrate that spontaneous control of HIV and improved antiviral activity are associated with a dramatic shift in the global antibody-glycosylation profile toward agalactosylated glycoforms. HIV-specific antibodies exhibited an even greater frequency of agalactosylated, afucosylated, and asialylated glycans. These glycoforms were associated with enhanced Fc-mediated reduction of viral replication and enhanced Fc receptor binding and were consistent with transcriptional profiling of glycosyltransferases in peripheral B cells. These data suggest that B cell programs tune antibody glycosylation actively in an antigen-specific manner, potentially contributing to antiviral control during HIV infection

    Differential Levels of Soluble Inflammatory Markers by Human Immunodeficiency Virus Controller Status and Demographics

    Get PDF
    Background. Human immunodeficiency virus (HIV)-1 elite controllers (ECs) represent an ideal population to study the effects of HIV persistence on chronic inflammation in the absence of antiretroviral therapy (ART). Methods. Twenty inflammatory markers measured in cohorts of ECs, HIV suppressed noncontrollers, and HIV-uninfected controls were compared using rank-based tests and partial least squares discriminant analysis (PLSDA). Spearman correlations were determined among the inflammatory markers, residual viremia by the single-copy assay, and CD4+ T cell slope. Results. Significant differences were seen between cohorts in 15 of the soluble inflammatory markers. Human immunodeficiency virus-1 ECs were found to have the highest levels for all of the markers with the exception of RANTES. In particular, median levels of 7 inflammatory markers (soluble CD14 [sCD14], interferon [IFN]-γ, IFN-γ-inducible protein [IP]-10, interleukin [IL]-4, IL-10, sCD40L, and granulocyte-macrophage colony-stimulating factor) were twice as high in the HIV-1 ECs compared with either of the HIV-suppressed or uninfected groups. Multivariate PLSDA analysis of inflammatory markers improved differentiation between the patient cohorts, discerning gender differences in inflammatory profile amongst individuals on suppressive ART. Soluble markers of inflammation in ECs were not associated with either levels of residual HIV-1 viremia or CD4+ T cell decline. Conclusions. Despite maintaining relatively low levels of viremia, HIV-1 ECs had elevated levels of a set of key inflammatory markers. Additional studies are needed to determine whether ECs may benefit from ART and to further evaluate the observed gender differences

    Characterization of anti-HIV-1 neutralizing and binding antibodies in chronic HIV-1 subtype C infection.

    Get PDF
    Neutralizing (nAbs) and high affinity binding antibodies may be critical for an efficacious HIV-1 vaccine. We characterized virus-specific nAbs and binding antibody responses over 21 months in eight HIV-1 subtype C chronically infected individuals with heterogeneous rates of disease progression. Autologous nAb titers of study exit plasma against study entry viruses were significantly higher than contemporaneous responses at study entry (p=0.002) and exit (p=0.01). NAb breadth and potencies against subtype C viruses were significantly higher than for subtype A (p=0.03 and p=0.01) or B viruses (p=0.03; p=0.05) respectively. Gp41-IgG binding affinity was higher than gp120-IgG (p=0.0002). IgG–FcγR1 affinity was significantly higher than FcγRIIIa (p<0.005) at study entry and FcγRIIb (p<0.05) or FcγRIIIa (p<0.005) at study exit. Evolving IgG binding suggests alteration of immune function mediated by binding antibodies. Evolution of nAbs was a potential marker of HIV-1 disease progression
    corecore