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Immunological events in acute HIV-1 infection before peak viremia (hyperacute phase) 
may contribute to the development of broadly cross-neutralizing antibodies. Here, we 
used pre-infection and acute-infection peripheral blood mononuclear cells and plasma 
samples from 22 women, including 10 who initiated antiretroviral treatment in Fiebig 
stages I–V of acute infection to study B cell subsets and B-cell associated cytokines 
(BAFF and CXCL13) kinetics for up to ~90  days post detection of plasma viremia. 
Frequencies of B cell subsets were defined by flow cytometry while plasma cytokine lev-
els were measured by ELISA. We observed a rapid but transient increase in exhausted 
tissue-like memory, activated memory, and plasmablast B cells accompanied by decline 
in resting memory cells in untreated, but not treated women. B cell subset frequencies 
in untreated women positively correlated with viral loads but did not predict emergence 
of cross-neutralizing antibodies measured 12 months post detection of plasma viremia. 
Plasma BAFF and CXCL13 levels increased only in untreated women, but their levels 
did not correlate with viral loads. Importantly, early CXCL13 but not BAFF levels pre-
dicted the later emergence of detectable cross-neutralizing antibodies at 12  months 
post detection of plasma viremia. Thus, hyperacute HIV-1 infection is associated with 
B cell subset changes, which do not predict emergence of cross-neutralizing antibodies. 
However, plasma CXCL13 levels during hyperacute infection predicted the subsequent 
emergence of cross-neutralizing antibodies, providing a potential biomarker for the 
evaluation of vaccines designed to elicit cross-neutralizing activity or for natural infection 
studies to explore mechanisms underlying development of neutralizing antibodies.
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inTrODUcTiOn

The development of a successful vaccine for HIV-1 will likely 
require the elicitation of broadly neutralizing antibodies 
(bNAbs), i.e., antibodies that target fairly conserved epitopes 
on the HIV envelope spike and, therefore, neutralize the major-
ity of HIV isolates; however, to date, it is not fully understood 
how such responses can be induced through vaccination. In 
natural infection, bNAbs only appear after years of infection, 
developing in a small subset of individuals, although cross-
neutralizing antibodies with narrower breadth can be detected 
earlier and in higher numbers of people (1–8). Thus far, plasma 
viral load, CD4 count and inflammation have been described as 
predictors of neutralizing breadth but these would be irrelevant 
in the context of vaccine trials (1–3, 6, 9). A report investigat-
ing bNAb lineages from early infection showed that reverted 
germline versions bound early autologous envelopes, poten-
tially initiating key B cell selection processes and downstream 
antibody evolution pathways (10). This observation points to 
the potential influence of events occurring during hyperacute 
HIV-1 infection—before peak viremia—on development of 
cross-neutralizing antibodies, an area that remains unexplored 
to date.

In primary and chronic untreated HIV-1 infection (PHI and 
CHI), prior studies, largely cross-sectional in nature, have shown 
that B cell subset frequencies, defined by surface expression levels 
of CD21 and CD27, are disrupted (11, 12). Specifically, HIV-1 
infected individuals have increased frequencies of immature/
transitional B cells, increased tissue-like memory (TLM) B cells 
with signs of premature exhaustion and decreased frequencies 
of resting memory (RM) B cells (11–13). Although combination 
antiretroviral therapy (cART) initiated during chronic infection 
results in normalization of most B cell subsets, memory B cell 
defects persist and only show significant recovery if patients 
initiate treatment early in the course of infection (14–20). It 
remains unknown whether pre-infection B cell subset frequen-
cies and changes occurring during hyperacute HIV-1 infection 
(or immediately following encounter with antigen following 
vaccination) might be used to predict the emergence of early 
cross-neutralizing antibodies and thus help guide vaccine strate-
gies to drive this activity.

HIV-1 bNAbs generally have unusual features including high 
levels of somatic hypermutation in both complementarity-deter-
mining region (CDR) loops and framework regions, long heavy 
chain CDR 3 (CDRH3), and a propensity toward autoreactivity 
(21–24). Indeed, accumulating data now show that levels of the 
chemokine CXCL13, produced by T follicular helper cells (Tfh), 
play a key role in the quality of the germinal center (GC) reac-
tion and predict development of cross-neutralizing antibodies 
in HIV-infected patients (25–27). The B cell-associated cytokine 
B cell activating factor (BAFF) can also potentially influence the 
survival and class switching of unique autoreactive B cells likely 
to generate cross-neutralizing antibodies (28–30). Thus far, 
BAFF has been shown to augment development of cross-neu-
tralizing antibodies in animal models when used as an adjuvant 
or supplied exogenously (31, 32) although this was not true in a 
cohort of subtype B infected individuals (25). Whether the levels 

of these two key B cell associated cytokines during hyperacute 
HIV-1 infection can predict subsequent development of cross-
neutralizing antibodies later remains to be determined.

We sought to understand the dynamics of the B cell response, 
with respect to subset changes and B cell associated cytokines, 
prior to infection, and during hyperacute infection and how 
they might influence development of cross-neutralizing anti-
bodies. Additionally, the impact of cART initiated during the 
acute phase of infection on these factors was evaluated. We used 
pre- and post-HIV-1 subtype C infection samples from young 
women enrolled in a study termed Females Rising through 
Education, Support and Health (FRESH) in the KwaZulu-Natal 
province of South Africa (33). We measured the dynamics of 
B cell subsets, plasma levels of BAFF and CXCL13 before infec-
tion and longitudinally during hyperacute HIV-1 infection 
and determined their influence on the emergence of cross-
neutralizing antibodies at approximately 1  year postinfection 
(PI). Our data demonstrate that B cell defects reported in PHI 
and CHI emerge during hyperacute HIV-1 infection in women 
who do not initiate early treatment and are abrogated with 
immediate treatment, indicative of the influence of viral load on 
the observed changes. However, these dramatic B cell changes 
occurring in hyperacute infection did not predict the emergence 
of cross-neutralizing antibodies. In contrast, changes in BAFF 
and CXCL13 during hyperacute infection were not directly 
associated with viral loads. Importantly, we found higher levels 
of CXCL13 during hyperacute infection in individuals who 
subsequently developed detectable cross-neutralizing antibod-
ies within 1 year of infection compared to those who did not. 
Hence our data from subtype C hyperacute infection confirm 
the utility of CXCL13 levels early in infection as a biomarker 
for possible superior GC activity associated with emergence of 
cross-neutralization antibodies.

MaTerials anD MeThODs

study Population and Blood samples
Females Rising through Education, Support and Health is a 
longitudinal cohort study of 18- to 23-year-old HIV-1-negative 
women at high risk of HIV-1 infection established in the Umlazi 
Township of Durban, KwaZulu-Natal, South Africa. Cohort 
recruitment and follow-up details have been comprehensively 
described elsewhere (33–35). Briefly, blood samples were 
obtained at study entry and every 3  months thereafter from 
HIV-1-negative study participants. Study subjects attended 
twice-weekly sessions in which trained counselors offered a 
comprehensive life and job skills, empowerment and HIV-1 pre-
vention curriculum. During the twice-weekly visits, finger prick 
blood samples were taken for monitoring of plasma HIV-1 RNA, 
with results available within 24 h. Participants with a positive 
RNA test were contacted immediately, counseling was provided, 
and blood samples were collected. Subsequently, longitudinal 
PI venous blood samples were obtained at regular intervals 
through peak viremia and beyond. Peripheral blood mononu-
clear cells (PBMCs) were frozen from each venous blood draw 
for future analysis. Initially, participants identified with onset of 
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plasma viremia were closely monitored and referred for cART 
if meeting eligibility according to South African guidelines 
(36). Beginning July 2014, the study protocol was amended and 
participants with onset of HIV-1 plasma viremia were initiated 
on cART immediately using a standard 3-drug regimen of teno-
fovir disoproxil fumerate 300  mg, emtricitabine 200  mg, and 
efavirenz 600 mg (TDF/FTC/EFZ). From July 2015, participants 
with acute viremia received early treatment with TDF/FTC/EFZ 
plus raltegravir (RAL) 400 mg twice-daily, with RAL withdrawn 
two months after suppression of plasma viremia to undetectable 
levels.

B cell Phenotyping
Frozen PBMCs were thawed and allowed to rest for 2 h before 
being used for phenotypic analysis using a panel of fluorescently 
labeled monoclonal antibodies reactive with the following 
cell surface markers: BV711 conjugated antihuman CD3 
(BioLegend, San Diego, CA, USA), BV450 mouse antihuman 
CD21 (BioLegend, San Diego, CA, USA), Qdot 605 mouse 
antihuman CD19 (Life Technologies, Carlsbad, CA, USA), PE 
mouse antihuman CD27 (BD Biosciences, San Jose, CA, USA), 
Alexa Fluor 700 mouse antihuman CD38 (BD Biosciences, 
San Jose, CA, USA), and aqua viability dye (Life Technologies, 
Carlsbad, CA, USA). Rested PBMCs were stained with 200 µl 
of diluted viability dye and allowed to incubate in the dark for 
15 min at RT. Thereafter, cells were washed twice in phosphate-
buffered saline (PBS) and then 100 µl of the cocktail of antibod-
ies was added to 2 × 106 cells and incubated for 15 min at room 
temperature. Thereafter, tubes were washed with 3 ml PBS and 
centrifuged at 600 × g for 5 min. Supernatant was discarded and 
100 µl of 2% paraformaldehyde was added to each tube. Samples 
were then acquired on the LSRFortessa (Becton Dickinson, 
Franklin Lakes, NJ, USA) and data analyzed on FlowJo version 
9.8.3 (FlowJo LLC, Ashland, OR, USA).

Determination of Plasma BaFF and 
cXcl13 levels
BAFF and CXCL13 levels were determined by ELISA (R&D 
systems, Minneapolis, MN, USA) using the manufacturer’s 
protocol. Plasma samples were thawed slowly on ice, spun down 
and the clear supernatant used immediately for the assays.

neutralization assays
Neutralization activity was determined using a previously 
described standard TZM-bl cells based assay (NIH AIDS Research 
and Reference Reagent Program, Division of AIDS, NIAID, NIH) 
(37). This assay measures Tat-induced luciferase reporter gene 
expression after infection by HIV-1 Env-pseudotyped viruses 
with neutralization quantified by reduction in relative light 
units in TZM-bl cells in the presence of HIV-1-positive plasma. 
Samples were used at 1:50 dilution, and the ID50 was calculated 
as the reciprocal dilution at which 50% of the virus was inhibited.

Data analysis
Non-parametric Spearman’s rank tests were used to test for cor-
relations and a 2-tailed Mann–Whitney test was used to evaluate 

unpaired groups. Wilcoxon matched signed-rank test was used 
to evaluate paired samples. To assess the relationship between 
each B  cell subset and time, varying viral load, CD4 count, 
BAFF, and CXCL13 adjusted for days PI, linear mixed effects 
models with random (subject specific) intercepts were fitted to 
the B cell data. Due to the complex non-linear evolution of B cell 
subsets over time, an unstructured mean was considered. The 
variables of interest (CD4 counts, viral load, CXCL13, and BAFF 
levels) were treated as time dependent covariates in the model, 
separately. B cell subsets (the outcome) were log transformed. 
By comparison of Akaike information criterion and Bayesian 
information criterion, the most suitable model was that with a 
random intercept and residuals which follow an autoregressive 
(1) structure. p-Values less than 0.05 were considered signifi-
cant. Data analysis was performed in Graphpad Prism version 
6 (Graphpad Software, San Diego, CA, USA) and Stata version 
13.0 (Statacorp, College Station, TX, USA).

ethics statement
Study subjects provided written informed consent for participa-
tion in the study. Ethical approval was provided by the Biomedical 
Research Ethics Committee of the University of KwaZulu-Natal 
and the Institutional Review Board of Massachusetts General 
Hospital.

resUlTs

rapid but Transient changes in 
Frequencies of B cells and B-cell subsets 
in acute hiV-1 subtype c infection
Pre-infection samples were obtained from all participants in 
this study. Among the 12 untreated participants, the initial PI 
samples were obtained in Fiebig stage I for 11 participants and 
Fiebig stage III for one participant, providing us the opportunity 
to study very early changes in B-cell subsets and associated 
cytokines, and to determine how early events might influence the 
emergence of cross-neutralizing antibodies. Multiple samples 
were also obtained from participants prior to peak viremia, and 
during resolution of peak viremia to a viral load set-point. Ten 
early treated women were also studied, representing a subset of 
persons within our cohort who initiated standard first line treat-
ment (TDF/FTC/EFZ) within less than 3  days of HIV-1 RNA 
detection. Among them, the initial PI samples were obtained 
in Fiebig stage I for 8 participants and Fiebig stage V for two 
participants. If a participant did not have a sample at 3 months 
after HIV-1 RNA detection, an alternative sample at 2 months 
was used (Figures 1 and 2).

It has previously been reported that HIV-1 uninfected people 
have geography- and gender-dependent differences in lympho-
cyte counts (38–40). We, therefore, first established the baseline 
(pre-infection) frequency of B cells defined as the percentage of 
CD3−CD19+ cells of the total live peripheral blood lymphocyte 
population in the 12 untreated women. We found that on average 
these cells accounted for 7% of the peripheral blood lymphocytes 
at baseline (range 3.9–12.1%), which was lower than what has 
been observed in geographically different cohorts from Uganda 
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FigUre 1 | Dynamics of plasma viral loads and CD4 counts during hyperacute HIV-1 subtype C infection in absence of early antiretroviral treatment. Plasma HIV-1 
RNA levels (red) and absolute CD4 counts (blue) before HIV infection and following onset of detectable plasma viremia in 12 subjects with hyperacute HIV infection 
that were not initiated on early antiretroviral treatment. The arrows indicate time-points used for B cell analysis. DFOPV, days following onset of plasma viremia.
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(40). Following infection, three untreated individuals showed a 
transient increase in frequency of total B cells at days 7 and 14, 
although these populations decreased thereafter (Figure  3A). 
Overall, the median frequency of total circulating B  cells was 
significantly lower compared to baseline pre-infection levels 
at 30  days (p =  0.024) and 90  days (0.048) following onset of 
plasma viremia (DFOPV) (Figure  3A). These data suggest 
that HIV-1 subtype C infection in an African population alters 
B cell frequencies presumably through indirect killing or redis-
tribution of B cells, or through expansion of other lymphocyte 
populations, resulting in decreased proportions of B cells in the 
periphery over time.

The availability of pre-infection and hyperacute infection sam-
ples allowed us to determine baseline frequencies and subsequent 
kinetics of alterations in B cell subsets with the goal of defining 
early signatures associated with emergence of cross-neutralizing 
antibodies. Different clades of HIV-1 differ in pathogenicity and 
rates of disease progression. Thus, we hypothesized that the B cell 
kinetics in this clade C cohort might be unique if clade specific 
features, such as replicative capacity, are a determinant of B cell 
subset alterations (41–43).

We first determined the kinetics of the four previously described 
B cell subsets [activated memory (AM), RM, TLM, and naïve cells 

(11, 12)] defined by the expression of CD21 and CD27 on CD19+ 
mature B cells as shown in representative data (Figure 3B). There 
was a rapid decrease in the frequencies of RM cells (CD21+CD27+) 
noted at 7 DFOPV (medians; 26.55 and 16.5%, range 7–43.9 and 
1–21.5% for baseline and 7  DFOPV, respectively), concurrent 
with an increase in TLM cells (CD21−CD27−) (medians; 12.7 
and 27.85%, range 7.94–38.3 and 7.49–67.7% for baseline and 
7  DFOPV, respectively). The frequencies of RM cells remained 
significantly lower than baseline throughout the time-points 
tested thereafter in the first 3 months PI (p = 0.008, 0.001, 0.005, 
and 0.019 for 7, 14, 30, and 90 DFOPV, respectively) (Figure 3C). 
Compared to baseline, frequencies of TLM cells were significantly 
higher at 7 and 14 DFOPV (p = 0.039 and 0.0001, respectively). 
Thereafter, frequencies of TLM cells remained elevated in 
most individuals though not statistically significant through 
to 90 DFOPV (Figure 3D). Importantly, neither RM nor TLM 
frequencies were restored to baseline values by ~90 DFOPV. We 
observed a significant expansion of AM cells (CD21-CD27+) by 
14 DFOPV (p = 0.005) that persisted at 30 DFOPV (p = 0.010) 
when a peak was reached followed by contraction to near base-
line values in some of the individuals by 90 DFOPV (p = 0.083) 
(Figure 3E). No changes were observed in the frequency of naïve 
B cells (CD21+CD27-) following HIV-1 infection (Figure 3F).
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FigUre 2 | Dynamics of plasma viral loads and CD4 counts during hyperacute HIV-1 subtype C infection with early initiation of antiretroviral treatment. Plasma 
HIV-1 RNA levels (red) and absolute CD4 counts (blue) before HIV infection and following onset of detectable plasma viremia in eight subjects with hyperacute HIV 
infection that were initiated on early antiretroviral treatment. The arrows indicate time-points used for B cell analysis. DFOPV, days following onset of plasma viremia.
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Plasmablasts (PBs) represent immunoglobulin secreting 
terminally differentiated B cells, which are transiently enriched 
in blood during infection or vaccination (44–46). To define PB 
kinetics in HIV-1 infection, we assessed the frequencies of CD3−

CD19+CD27+CD38+++ cells before and upon HIV-1 infection. At 
pre-infection baseline, the median frequency of PBs was 1.26% 
(range 0.321–11.4%) of the total B cell population. Upon infection, 
there was a transient expansion of the PB population as shown in 
the representative example (Figure 3G) that peaked by ~14 days 
(medians 1.26 and 6.58%, range 0.321–11.4% and 0.532–28.6% 
for baseline and 14 DFOPV, respectively). Following HIV-1 infec-
tion, frequencies of the PB population remained significantly 
elevated at all time-points tested (p  =  0.016, 0.002, 0.002, and 
0.019 for 7, 14, 30, and 90  DFOPV, respectively) (Figure  3H). 
Thus, these data illustrate that untreated subtype C acute HIV-1 
infection is associated with rapid changes in frequencies of circu-
lating B cell subsets characterized by an increased frequency of 
AM, TLM, and PBs but a decrease in RM cells.

increase in Plasma BaFF and cXcl13 
levels in acute hiV-1 subtype c infection
Given the early increase in PBs and alterations in B cell subsets, and 
considering that acute HIV infection has previously been associ-
ated with a cytokine storm that may have profound long-term 
immunological consequences (47), we next sought to determine 
whether there were changes following HIV infection in soluble 
factors associated with B cell activation, survival, and maturation. 
Specifically, we investigated the levels and kinetics of BAFF, a 
cytokine important for B cell survival, and CXCL13, a chemokine 
responsible for B cell trafficking to GCs and potentially responsi-
ble for the expansion of PBs (26, 48). The median plasma level of 

BAFF at baseline was 795 pg/ml (range 536–1,121 pg/ml). These 
levels increased rapidly and significantly upon infection peaking 
by 7 DFOPV at a median of 1,817 pg/ml (range 1,457–4,119 pg/
ml, p = 0.0005) and remained significantly higher throughout the 
first 90 DFOPV (p = 0.005 for 14 DFOPV and p = 0.0005 for both 
30 and 90 DFOPV) (Figure 4A). The median plasma CXCL13 
level at baseline was 76 pg/ml (range 40–282 pg/ml). Similar to 
BAFF, CXCL13 levels were elevated upon infection although the 
increase was progressive with the highest median of 275 pg/ml 
(range 125–511 pg/ml) being registered 90 DFOPV (the last visit 
analyzed). Compared to baseline, the measurements remained 
significantly higher throughout the time-points analyzed in 
the first 90 DFOPV (p =  0.003, 0.0005, 0.0005, and 0.0039 for 
3, 14, 30, and 90 DFOPV, respectively) (Figure 4B). Thus, acute 
HIV-1 infection is associated with rapid and gradual increase in 
plasma levels of B cell-associated cytokines BAFF and CXCL13, 
respectively.

Viral loads Directly Drive changes in  
B cell subset Frequencies but not levels 
of Plasma BaFF and cXcl13
Viral loads and associated immune activation in chronic infec-
tion have been linked to changes in B cell subsets and develop-
ment of bNAbs during chronic infection (9, 49, 50). To determine 
whether viral replication was associated with the observed 
changes, we first assessed the relationship between contempo-
raneous viral loads, CD4+ T  cell counts and B  cell frequencies 
over time. We found a negative trend and significant relationship 
between PBs and CD4 counts at baseline (rho = −0.52, p = 0.080) 
and 7 DFOPV (rho = −0.82, p = 0.023), respectively (data not 
shown). Next, we used linear mixed effect models to investigate 
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FigUre 4 | Dynamics of plasma BAFF and CXCL13 levels following acute HIV-1 subtype C in absence of early antiretroviral treatment. Panels (a,B) show kinetics 
of BAFF and CXCL13 levels determined by ELISA using plasma samples obtained longitudinally from untreated patients within the first ~90 DFOPV and compared 
to matched baseline values. Horizontal lines represent median values and each color represents one patient. DFOPV, days following onset of plasma viremia. 
p-Values were calculated by Wilcoxon matched signed-rank test (**p < 0.005, ***p < 0.0001).

FigUre 3 | Frequency of B cells before and during acute HIV-1 subtype C infection in absence of early antiretroviral treatment. B cells were defined by the 
expression of CD19 on CD3− peripheral blood lymphocytes. B cell subsets were defined by the expression of CD27 and CD21 on CD3−CD19+ lymphocytes. 
Plasmablasts (PBs) were defined as CD27+CD38+++ cells on CD3−CD19+ peripheral lymphocytes. Subsets were analyzed on longitudinal AHI samples obtained 
in the first ~90 DFOPV and compared to matched baseline values. Panel (a) shows a summary of the frequency of B cells as a percentage of lymphocytes 
overtime. Panel (B) is representative data showing B cell subsets from baseline (before infection) to ~60 DFOPV, example from participant 127-033-0097-079. 
Panels (c–F) represent frequencies of B cell subsets; (c) resting memory, (D) tissue-like memory, (e) activated memory, and (F) naïve cells. (g) Representative 
data from participant 127-033-0108-093 shows kinetics of PBs from baseline to ~90 DFOPV. (h) A comparison between frequencies of PBs at baseline and 
longitudinal time-points up to ~90 DFOPV. Horizontal lines represent median values and each color represents one patient. DFOPV, days following onset of 
plasma viremia, and time-point “0” represents baseline (visit prior to infection). p-Values were calculated by Wilcoxon matched signed-rank test (*p < 0.05, 
**p < 0.005).
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TaBle 1 | Linear mixed effect models for the relationship between viral loads, CD4 counts, CXCL13, and BAFF over time and B cell subsets in absence of early 
antiretroviral treatment.

hiV-1 infected untreated

B cell subset activated memory resting memory Tissue-like memory Naive Plasmablasts

Viral Loads Coef (SE) 0.0604 (0.037) −2.5253 (0.5238) 0.1083 (0.0388) −0.3031 (1.2403) 0.1384 (0.0973)
p-Value 0.103 <0.0001 0.005 0.807 0.155 

CD4 counts Coef (SE) −0.0006 (0.0002) 0.0119 (0.0035) −0.0005 (0.0002) 0.0028 (0.0074) −0.0010 (0.0005)
p-Value 0.009 0.001 0.039 0.705 0.078

CXCL13 Coef (SE) 0.0008 (0.0006) −0.0160 (0.0106) 0.0007 (0.0007) 0.0026 (0.0188) 0.0010 (0.0013)
p-Value 0.207 0.13 0.309 0.889 0.424

BAFF Coef (SE) 0.0003 (0.0001) −0.0015 (0.0025) 0.00002 (0.0001) 0.0038 (0.0040) 0.0007 (0.0003)
p-Value 0.006 0.553 0.909 0.373 0.026

Significant p values are shown in bold.
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the overall relationship between the rapid changes in viral loads, 
CD4+ T cells and observed changes in B cell subset frequencies 
over time. Viral load was negatively associated with RM cell 
frequencies (p  <  0.0001), positively associated with TLM cells 
(p  =  0.005) but no significant associations with AM and PBs 
were observed (Table 1). In contrast, CD4+ T cell counts were 
positively associated with RM cells (p  =  0.001) and negatively 
associated with TLM cells (p = 0.039) and AM cells (p = 0.009) 
(Table 1). Further, we used a model of a similar form to determine 
the relationship between changing levels of BAFF, CXCL13, and 
markers of disease progression. Interestingly, there was no sig-
nificant relationship between viral loads and BAFF (p = 0.511) 
or CXCL13 (p = 0.940). Furthermore, no association was found 
between CD4 cell counts and BAFF plasma levels; however, we 
observed a negative association between CD4+ T cell counts and 
CXCL13 plasma levels (p < 0.0001) (data not shown). We also 
found that BAFF levels were significantly associated with high 
frequencies of AM (p = 0.006) and PBs (p = 0.026) cells (Table 1). 
In contrast there was no significant relationship between plasma 
levels of CXCL13 and any B cell subset frequencies (Table 1). Taken 
together, these data confirm the direct relationship between viral 
loads and B cell subset frequencies but not BAFF and CXCL13. 
We, therefore, show for the first time that accumulation of TLM 
cells, which has mostly been associated with chronic infection, 
manifests within days of infection and associates with viral loads. 
Furthermore, the observation of a positive correlation between 
BAFF levels and specific B  cell subsets (AM and PBs) during 
hyperacute HIV-1 infection may suggest a direct stimulation and/
or maintenance of these subsets by this cytokine.

early carT Blocked changes in B cell 
subset Frequencies and Plasma levels of 
BaFF while Diminishing changes in levels 
of Plasma cXcl13
Following our observation that changes in B cell subset frequen-
cies are influenced by viral load, we next determined whether 
in the absence of persistent antigenemia the levels of the differ-
ent B  cell subsets, as well as B  cell associated cytokines BAFF 
and CXCL13, would remain normal. Remarkably, there were 
no significant B  cell subset changes observed (representative 
data Figures  5A,B and summary Figures  5C–E) except for 

an increase in PBs at 7 DFOPV (p = 0.039) (Figure 5F) but at 
lower frequencies than what was observed in untreated women 
(Figure 3). Indeed, frequencies of AM cells at 30 and 90 DFOPV 
trended toward being lower than baseline (p = 0.109 and 0.078, 
respectively, data not shown).

Furthermore, we did not observe significant changes in 
median plasma BAFF levels up to 90  DFOPV (Figure  6A). 
However, CXCL13 levels trended toward being higher upon 
infection and were significantly higher at 90 DFOPV compared 
to baseline despite complete suppression of viral loads in most 
of the individuals (Figure 6B). The levels of BAFF and CXCL13 
were significantly different between the untreated and early 
treated individuals at all time-points tested except at baseline and 
7 DFOPV for CXCL13 (Figures 6C,D). Our data confirm that 
viremia drives the changes in B cell subset frequencies, an effect 
that is blocked by early treatment. Furthermore, although early 
cART largely abrogated the cytokine surge, there was no direct 
relationship between viral loads and the cytokines in untreated 
persons, suggesting that the early cytokine responses may be 
induced by infection-associated changes other than viremia.

emergence of cross-neutralizing 
antibodies within 1 Year of hiV-1 subtype 
c infection
Given the rapid changes in frequencies of B  cell subsets and 
increased levels of BAFF and CXCL13 observed during acute 
HIV-1 infection, we next determined whether the enrichment 
of a particular B cell subset or cytokine was associated with the 
emergence of cross-neutralizing antibodies, as an early predic-
tor of cross-neutralization activity. We first probed for presence 
of cross-neutralizing antibodies for the 12 antiretroviral-naïve 
individuals using plasma collected at ~1 year PI. Antibody cross-
neutralization activity was determined by standard TZM-bl 
assay against 12 viruses of different subtypes (C, B, and A) and 
tiers (1 and 2) (51) (Figure  7). As expected, we found that all 
individuals had detectable cross-neutralizing antibodies at 1 year 
PI against the tier 1 subtype C strain MW965 (100%) and most 
had activity against the tier 1 subtype B viruses MN.3 (92%) and 
SF162.LS (83%). One patient 127-33-0108-093 neutralized all 
three tier 1 viruses with the greatest potency at the time-point 
prior to initiation of cART (Figure 7). Among all subjects tested, 
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FigUre 5 | Early combination antiretroviral therapy (cART) blocks B cell subset changes. Peripheral blood mononuclear cells obtained longitudinally from eight 
individuals who initiated cART during Fiebig stage I–V were used to define B cell subsets and plasmablasts (PBs) by the expression of CD27, CD21, and 
CD27+CD38+++ cells on CD3−CD19+ peripheral lymphocytes, respectively. B cell frequencies from the first ~90 DFOPV were compared to matched baseline values. 
Panels (a,B) are representative data from participant 127-033-0629-453 showing kinetics of B cell subsets and PBs, respectively, from baseline (before infection) to 
90 DFOPV. Panels (c–F) represent frequencies of B cell subsets; (c) resting memory, (D) tissue-like memory, (e) activated memory, and (F) PB cells. Horizontal lines 
represent median values and each color represents one patient. DFOPV, days following onset of plasma viremia, and day “0” represents baseline (visit prior to 
infection).
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there was weak cross-neutralization activity detected against 4/9 
(44%) tier 2 viruses tested. Three patients (127-33-0048-036, 
127-33-0108-093, and 127-33-0450-318) had detectable but weak 
cross-neutralization activity against the tier 2 subtype B viruses 
tested. No activity was detected against tier 2 subtype A viruses 
at 1 year PI (Figure 7).

To enable us to perform further analyses, individuals were 
categorized into those that did or did not have detectable cross-
neutralization activity (regardless of the potency) against any of 
the tier 2 viruses (6). Using this stratification, five individuals 
were classified as having detectable cross-neutralization activity 
and seven as having no detectable cross-neutralization activity 
(Figure 7), and these strata were used in subsequent analysis.

Plasma levels of cXcl13 early in 
infection Predict emergence of  
cross-neutralizing antibodies 1 Year Pi
We next investigated whether events occurring early upon infec-
tion could predict the emergence of cross-neutralizing antibodies 

1 year PI. We found no differences between individuals with and 
without detectable cross-neutralization activity when compar-
ing viral load set-point (p = 0.268) and contemporaneous viral 
loads (p =  0.404). Contemporaneous CD4 counts also did not 
distinguish between the two groups (p = 0.458). Notably, among 
individuals with detectable cross-neutralizing antibodies at 1 year, 
3/5 (60%) qualified for and initiated cART due to low CD4 count 
within 2 years of infection compared to 2/7 (28%) of those who 
did not, though that relationship between emergence of cross-
neutralizing antibodies and deterioration in CD4 counts was also 
not statistically significant (p  =  0.558, Fisher’s exact test). One 
participant in the group with no detectable cross-neutralization 
was initiated on treatment outside of normal criteria due to 
pregnancy. To determine whether the expansion of a specific 
B  cell subset following hyperacute infection was predictive of 
the emergence of cross-neutralizing antibodies, we compared 
the peak frequency of AM, TLM, and PBs and nadir levels of 
RM cells in the individuals with and without cross-neutralization 
activity and found no apparent differences in this small group of 
12 individuals (data not shown).
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FigUre 6 | Early combination antiretroviral therapy (cART) blocks or reduces changes in plasma levels of BAFF and CXCL13. Panels (a,B) show kinetics of BAFF 
and CXCL13 levels, respectively, determined by ELISA using plasma samples obtained longitudinally from 10 women who initiated cART during Fiebig stages I–V. 
Panels (c,D) show a comparison between kinetics of BAFF and CXCL13, respectively, between untreated and early treated women. Lines represent median values. 
DFOPV, days following onset of plasma viremia. p-Values for (a,B) were calculated by Wilcoxon matched signed-rank test and for (c,D) by Mann–Whitney test 
(**p < 0.005, ***p < 0.0001).
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Similarly, we sought to investigate whether plasma levels 
of CXCL13 and BAFF were associated with the emergence of 
cross-neutralizing antibodies. There was no significant differ-
ence between BAFF levels in the two groups at all time-points 
tested (data not shown). In contrast, plasma CXCL13 levels were 
significantly higher in those with detectable cross-neutralization 
activity at all early time-points tested (p = 0.012, 0.010, 0.030, and 
0.018 for 7, 14, 30, and 90 DFOPV, respectively) (Figures 8A–D). 
Hence, high levels of CXCL13 early in infection were associated 
with emergence of cross-neutralizing antibodies within 1 year PI.

DiscUssiOn

Development of an effective vaccine able to induce bNAbs remains 
a high priority for the HIV field but how these responses evolve in 
natural infection remains unclear. It has previously been reported 
that interactions between B cells and transmitted founder virus 
soon after infection likely shape the evolution of such antibod-
ies (10). Thus understanding factors that influence the humoral 
response to HIV-1 early in natural infection could open new 
insights into designing an effective vaccine. We took advantage 
of a unique cohort in which specimens were available prior to 

HIV-1 infection and longitudinally during the earliest phases of 
infection, and determined the relationship between frequencies 
of B cell subsets and key B cell activating cytokines (BAFF and 
CXCL13) on the emergence of cross-neutralizing antibodies 
1 year following infection. We show that in the absence of cART, 
the impact of HIV-1 infection is rapid and greatly impacts the 
frequencies of circulating RM, TLM, and PBs subsets, within 
7  DFOPV. These frequencies rebounded although never to the 
baseline values by ~90 DFOPV which coincides with early stages 
of viral load set-point. These subset changes were associated with 
viral load in the regression analyses, confirming that viremia 
drives them. Plasma levels of BAFF and CXCL13 were also 
elevated in untreated people but did not show association with 
viral loads within that group. While BAFF levels showed a steady 
decrease after a peak on day 7, the levels of CXCL13 continued 
to rise and remained high 90 DFOPV possibly due to effects of 
immune activation or ongoing viral replication within lymphoid 
tissues. Frequencies of B cell subsets and plasma levels of BAFF 
did not influence emergence of cross-neutralizing antibodies. 
However, individuals with high plasma levels of CXCL13 early 
in infection were more likely to have detectable but weak cross-
neutralizing antibodies at 1 year PI.
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FigUre 7 | Emergence of cross-neutralization activity in plasma obtained within 1 year of HIV-1 subtype C infection. The emergence of cross-neutralization activity 
in plasmas from 12 patients ~1 year post detection of plasma viremia was evaluated against viruses from different clades (C, B, and A) and tiers (1 and 2) as 
indicated at the top. The values shown are the reciprocal dilution of plasma at which 50% of the virus was neutralized (ID50). Cases where no cross-neutralization 
was detected were assigned an ID50 of <1:50. ID50s are color coded for clarity; ID50 < 1:50 (gray), 1:50 to 1:100 (blue), 1:101 to 1:200 (yellow), 1:201 to 1:1,000 
(orange), and >1:1,000 (red). Individuals with detectable cross-neutralization of tier 2 viruses (5/12) are grouped together. * indicates that plasma samples tested 
were obtained prior to 1 year of infection. MuLV was used as the negative control. Experiments were performed at least two independent times and the mean values 
are reported.
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CXCL13 has previously been documented to be a biomarker 
of the GC activity in mice, non-human primate models, vaccine 
recipients and HIV-1 infected people (25–27). In those studies, 
participants were infected with a range of subtypes but the sam-
ples tested were mainly from primary or chronic HIV-1 infection. 
We report a similar observation in our cohort of 12 young African 
women infected with HIV-1 subtype C and in hyperacute HIV-1 
infection. Importantly, pre-infection samples allowed longitudi-
nal tracking of changes following infection, clearly demonstrating 
that CXCL13 is induced following infection. Similar to previous 
reports, viral load did not have a direct influence on the CXCL13 
levels in the first 60 DFOPV. However, there was a trend toward 
a positive correlation by 90 DFOPV, which might be an indica-
tion of a shift toward chronic infection, a period during which 
CXCL13 levels and viral loads correlate positively in the absence 
of treatment (52–55). CXCL13 plays a crucial role in the organiza-
tion of B cell follicles of secondary lymphoid organs by recruiting 
B  cells and specific T  cell subsets through its receptor CXCR5 
(56, 57), thus its ability to predict emergence of cross-neutralizing 
antibodies is not surprising.

We report a dramatic decline in frequencies of circulating RM 
cells that might reflect the impact of GC destruction immediately 
upon establishment of HIV-1 infection (5). The mechanism by 
which HIV-1 results in depletion of RM cells is unclear but has 
significant implications for maintenance of humoral immunity. 
Future studies need to understand whether it is active virus rep-
lication that is responsible for RM changes or a particular viral 
protein, and if the latter, this would suggest potential caution in 
the inclusion of that protein in potential immunogens to avoid 
unintended detrimental immunological consequences. Of note, 

all the observed B cell subset changes were successfully blocked 
by cART initiated during Fiebig stage I-V except for an initial 
spike of PBs, a possible reflection of GC events where infected 
CD4 Tfh cells may continue to stimulate B cells within the follicles 
before death (58).

Despite viral loads being a good predictor of development of 
cross-neutralizing antibodies, which are precursors for bNAbs 
(6), only about 25% of individuals displaying high viral loads 
develop bNAbs suggesting a role for other factors. The rate of 
depletion of CD4 T cells has also been reported to predict the 
development of bNAbs (2). In our study, neither viral loads nor 
CD4 counts predicted the emergence of cross-neutralizing anti-
bodies at 1 year PI. However, the independent prediction by levels 
of CXCL13 suggests a complex multifactorial determination of 
the development of cross-neutralizing antibodies. Indeed, other 
factors, in addition to viral loads and CD4 counts, have been 
reported to predict the development of cross-neutralizing activity 
and could have influenced the associations that we observed here. 
For instance, early follicular helper T  cell responses, measured 
by the frequencies of CXCR5+ CD4 T cells and which we did not 
assess in this study, has been show to predict of the development 
of neutralization breadth (25, 59). In addition, the development 
of bNAbs has been associated with reduced control of autore-
activity (60). Importantly, the observations reported here could 
be limited due to the small numbers of patients available which 
might preclude our ability to detect associations. Furthermore, we 
probed for cross-neutralizing antibodies within 1 year of infec-
tion, which is very early in the development of cross-neutralizing 
antibodies, and certainly before the development of any bNAbs 
in any of the study participants. These limitations could have also 
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FigUre 8 | Plasma levels of CXCL13 are associated with emergence of antibody cross-neutralization activity. Panels (a–D) show the difference over time in plasma 
CXCL13 levels between individuals with detectable cross-neutralization activity (detectable cross-neutralization) and those without (no detectable cross-
neutralization). p-Values were calculated by Mann–Whitney test. DFOPV, days following onset of plasma viremia.
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reduced our ability to detect associations between B cell subsets 
and the emergence of cross-neutralizing antibodies.

In conclusion, acute HIV-1 subtype C infection is associated 
with rapid changes in B  cell subsets that do not predict the 
emergence of cross-neutralizing antibodies within the first year 
of infection. Instead, our data showing an association between 
CXCL13 levels in acute infection and emergence of cross-
neutralizing antibodies adds to growing evidence suggesting 
that plasma CXCL13 might be a surrogate for a functional GC 
compartment and serve as a biomarker to evaluate candidate 
vaccines for their ability to stimulate a rapid and robust GC 
reaction.
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