260 research outputs found
Non-Equilibrium Electron Transport in Two-Dimensional Nano-Structures Modeled by Green's Functions and the Finite-Element Method
We use the effective-mass approximation and the density-functional theory
with the local-density approximation for modeling two-dimensional
nano-structures connected phase-coherently to two infinite leads. Using the
non-equilibrium Green's function method the electron density and the current
are calculated under a bias voltage. The problem of solving for the Green's
functions numerically is formulated using the finite-element method (FEM). The
Green's functions have non-reflecting open boundary conditions to take care of
the infinite size of the system. We show how these boundary conditions are
formulated in the FEM. The scheme is tested by calculating transmission
probabilities for simple model potentials. The potential of the scheme is
demonstrated by determining non-linear current-voltage behaviors of resonant
tunneling structures.Comment: 13 pages,15 figure
Pairing, Charge, and Spin Correlations in the Three-Band Hubbard Model
Using the Constrained Path Monte Carlo (CPMC) method, we simulated the
two-dimensional, three-band Hubbard model to study pairing, charge, and spin
correlations as a function of electron and hole doping and the Coulomb
repulsion between charges on neighboring Cu and O lattice sites. As a
function of distance, both the -wave and extended s-wave pairing
correlations decayed quickly. In the charge-transfer regime, increasing
decreased the long-range part of the correlation functions in both
channels, while in the mixed-valent regime, it increased the long-range part of
the s-wave behavior but decreased that of the d-wave behavior. Still the d-wave
behavior dominated. At a given doping, increasing increased the
spin-spin correlations in the charge-transfer regime but decreased them in the
mixed-valent regime. Also increasing suppressed the charge-charge
correlations between neighboring Cu and O sites. Electron and hole doping away
from half-filling was accompanied by a rapid suppression of anti-ferromagnetic
correlations.Comment: Revtex, 8 pages with 15 figure
The use of an e-learning constructivist solution in workplace learning
We wished to investigate whether an e-learning approach which uses constructivist principles can be successfully applied to train employees in a highly specialised skill thought to require expert individuals and extensive prolonged training. The approach involved the development of an e-learning package which included simulations and interactivity, then experimental testing in a case study workplace environment with the collection of both quantitative and qualitative data to assess the effectiveness of the package. Our study shows that this e-learning strategy improved the skills of the inexperienced
operator significantly. We therefore propose that such programmes could be used as a work based training aid and used as a model system for the training of employees in complex skilled tasks in the workplace. This research demonstrates that the e-learning can be applied outside the traditional learning environment to train unskilled employees to undertake complex practical tasks which traditionally would involve prohibitively expensive instruction. This work also illustrates that simulations and interactivity are powerful tools in the design of successful e-learning packages in preparing learners for real world practical situations. Finally this study shows that workplace learners can be better served by elearning environments rather than conventional training as they allow asynchronous learning and private study which are valued by employees who have other demands on their time and are more comfortable receiving tuition privately Relevance to industry: E-learning using constructivist principles, and incorporating simulations and interactivity can be used successfully in the training of highly specialised and skilled tasks required in the
modern workplace
A new species of Cymadusa Savigny, 1816 (Crustacea: Amphipoda: Ampithoidae) from northeastern Brazil
Signatures of Spin and Charge Energy Scales in the Local Moment and Specific Heat of the Two-Dimensional Hubbard Model
Local moment formation driven by the on--site repulsion is one of the
most fundamental features in the Hubbard model. At the simplest level, the
temperature dependence of the local moment is expected to have a single
structure at , reflecting the suppression of the double occupancy. In
this paper we show new low temperature Quantum Monte Carlo data which emphasize
that the local moment also has a signature at a lower energy scale which
previously had been thought to characterize only the temperatures below which
moments on {\it different} sites begin to correlate locally. We discuss
implications of these results for the structure of the specific heat, and
connections to quasiparticle resonance and pseudogap formation in the density
of states.Comment: 13 pages, 19 figure
Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity
The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp
scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx}
orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized
description of the in-plane electron correlations the superconducting order
parameter is found to be a orbital-singlet spin-triplet with two spatial
components. The spatial anisotropy is 7%. The different components of the order
parameter give rise to two-dimensional gapless fluctuations. The phase
transition is of third order. The temperature dependence of the pair density,
specific heat, NQR, Knight shift, and susceptibility are in agreement with
experimental results.Comment: 20 pages REVTEX, 3 figure
Astrophysical Axion Bounds
Axion emission by hot and dense plasmas is a new energy-loss channel for
stars. Observational consequences include a modification of the solar
sound-speed profile, an increase of the solar neutrino flux, a reduction of the
helium-burning lifetime of globular-cluster stars, accelerated white-dwarf
cooling, and a reduction of the supernova SN 1987A neutrino burst duration. We
review and update these arguments and summarize the resulting axion
constraints.Comment: Contribution to Axion volume of Lecture Notes in Physics, 20 pages, 3
figure
Spectral and transport properties of doped Mott-Hubbard systems with incommensurate magnetic order
We present spectral and optical properties of the Hubbard model on a
two-dimensional square lattice using a generalization of dynamical mean-field
theory to magnetic states in finite dimension. The self-energy includes the
effect of spin fluctuations and screening of the Coulomb interaction due to
particle-particle scattering. At half-filling the quasiparticles reduce the
width of the Mott-Hubbard `gap' and have dispersions and spectral weights that
agree remarkably well with quantum Monte Carlo and exact diagonalization
calculations. Away from half-filling we consider incommensurate magnetic order
with a varying local spin direction, and derive the photoemission and optical
spectra. The incommensurate magnetic order leads to a pseudogap which opens at
the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle
states survive in the doped systems, but their dispersion is modified with the
doping and a rigid band picture does not apply. Spectral weight in the optical
conductivity is transferred to lower energies and the Drude weight increases
linearly with increasing doping. We show that incommensurate magnetic order
leads also to mid-gap states in the optical spectra and to decreased scattering
rates in the transport processes, in qualitative agreement with the
experimental observations in doped systems. The gradual disappearence of the
spiral magnetic order and the vanishing pseudogap with increasing temperature
is found to be responsible for the linear resistivity. We discuss the possible
reasons why these results may only partially explain the features observed in
the optical spectra of high temperature superconductors.Comment: 22 pages, 18 figure
Exploring Appropriation of Global Cultural Rituals
Adolescents, as a consequence of identification with popular culture, have been described as having homogenous consumption patterns. More recently, however, it has been recognised that âglocalisationâ (global practices reworked to fit local contexts) affords an opportunity for differentiation. This paper considers a recent UK phenomenon, namely that of the US high school prom, and seeks to explore the ways in which this ritual has been adopted or adapted as part of youth culture. The method employed here was mixed methods and included in-depth interviews with those who attended a prom in the last three years as well as a questionnaire distributed amongst high school pupils who were anticipating a high school prom. The findings illustrate that the high school prom in the UK is becoming increasingly integrated into the fabric of youth culture although, depending on the agentic abilities employed by the emerging adults in the sample, there is differing appropriation of this ritual event particularly in relation to attitudes towards and motivations for attending the prom. A typology of prom attendees is posited. This paper contributes to our understanding of this practice in a local context
- âŠ