32 research outputs found

    The graded redefined assessment of strength sensibility and prehension: reliability and validity.

    Get PDF
    Abstract With the advent of new interventions targeted at both acute and chronic spinal cord injury (SCI), it is critical that techniques and protocols are developed that reliably evaluate changes in upper limb impairment/function. The Graded Redefined Assessment of Strength Sensibility and Prehension (GRASSP) protocol, which includes five subtests, is a quantitative clinical upper limb impairment measure designed for use in acute and chronic cervical SCI. The objectives of this study were to: (1) establish the inter-rater and test-retest reliability, and (2) establish the construct and concurrent validity with the International Standards of Neurological Classification of Spinal Cord Injury (ISNCSCI), Spinal Cord Independence Measure II (SCIM), and the Capabilities of Upper Extremity Questionnaire (CUE). The study protocol included repeated administration of the GRASSP to a cross-section of individuals with tetraplegia who were neurologically stable (n=72). ISNCSCI, CUE, and SCIM assessments were also administered. Two assessors examined the individuals over a 7-day period. Reliability was tested with intra-class correlation coefficients; construct validity was established with agreement/discordance analysis between the GRASSP and ISNCSCI sensory and motor items; and concurrent validity was tested with Spearman correlation coefficients. Inter-rater and test-retest reliability for all subtests within the GRASSP were above the hypothesized value of 0.80 (0.84-0.96 and 0.86-0.98, respectively). The GRASSP is about 50% more sensitive (construct validity) than the ISNCSCI when defining sensory and motor integrity of the upper limb; the subtests showed concurrence with the SCIM, SCIM self-care subscale, and CUE. The strongest concurrence to impairment was with self-perception of function (CUE) (0.57-0.83, p\u3c0.0001). The GRASSP was found to demonstrate reliability, construct validity, and concurrent validity for use as a standardized upper limb impairment measure for individuals with tetraplegia

    Interactive visuo-motor therapy system for stroke rehabilitation

    Get PDF
    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons”); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary result

    Interactive visuo-motor therapy system for stroke rehabilitation

    Get PDF
    We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary results.info:eu-repo/semantics/publishedVersio

    Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

    Get PDF
    SummaryNeuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect

    Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: A systematic meta-analysis

    No full text
    Background. Despite the rise of virtual reality (VR)-based interventions in stroke rehabilitation over the past decade, no consensus has been reached on its efficacy. This ostensibly puzzling outcome might not be that surprising given that VR is intrinsically neutral to its use—that is, an intervention is effective because of its ability to mobilize recovery mechanisms, not its technology. As VR systems specifically built for rehabilitation might capitalize better on the advantages of technology to implement neuroscientifically grounded protocols, they might be more effective than those designed for recreational gaming. Objective. We evaluate the efficacy of specific VR (SVR) and nonspecific VR (NSVR) systems for rehabilitating upper-limb function and activity after stroke. Methods. We conducted a systematic search for randomized controlled trials with adult stroke patients to analyze the effect of SVR or NSVR systems versus conventional therapy (CT). Results. We identified 30 studies including 1473 patients. SVR showed a significant impact on body function (standardized mean difference [SMD] = 0.23; 95% CI = 0.10 to 0.36; P = .0007) versus CT, whereas NSVR did not (SMD = 0.16; 95% CI = −0.14 to 0.47; P = .30). This result was replicated in activity measures. Conclusions. Our results suggest that SVR systems are more beneficial than CT for upper-limb recovery, whereas NSVR systems are not. Additionally, we identified 6 principles of neurorehabilitation that are shared across SVR systems and are possibly responsible for their positive effect. These findings may disambiguate the contradictory results found in the current literature
    corecore