119 research outputs found

    Novel Fusion \u3ci\u3eKTN1-PRKD1\u3c/i\u3e in Cribriform Adenocarcinoma of Salivary Glands Located in the Parotid Gland: Case Report Including Cytologic Findings

    Get PDF
    Background Cribriform adenocarcinoma of salivary glands (CASG) is a rare, predominantly minor salivary gland tumor first described in 1999. Because the tumor shares morphologic and molecular features with polymorphous adenocarcinoma (PAC), in 2017, the World Health Organization (WHO) included CASG within the spectrum of PAC. Almost 75% of CASG harbor molecular alterations in the PRKD (Protein kinase D) gene family, and some cases show ARID1A (AT-rich interaction domain 1A)-PRKD1 or DDX3X (DEAD-Box Helicase 3 X-Linked)-PRKD1 fusions. Case presentation A 39-year-old man presented with headache and painless right cheek mass of two years duration. Imaging showed a well-circumscribed, lobulated 1.7-centimeter mass located in the superficial lobe of the right parotid gland. Fine needle aspiration (FNA) of the mass revealed a “salivary gland neoplasm of uncertain malignant potential” (SUMP). Histopathology and immunohistochemical features of the resected tumor showed a primary salivary gland neoplasm with perineural invasion suggestive of cribriform adenocarcinoma of the salivary glands (CASG). Whole exome sequencing (WES) and transcriptome sequencing (RNAseq) of the tumor revealed a novel, intrachromosomal gene fusion: KTN1 (Kinectin1)-PRKD1. Sanger sequencing and Florescent insitu hybridization (FISH) break apart probe results subsequently confirmed the presence of the fusion. The patient recovered from surgery without complications. Conclusion We report a novel fusion KTN1-PRKD1 in Cribriform Adenocarcinoma of the Salivary Glands located in the parotid gland. Importantly, this KTN1 fusion partner may account for other reports of intrachromosomal fusions in CASG in which the PRKD1 gene partner was not identified

    Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA

    Get PDF
    In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action

    Rule-based modeling of biochemical systems with BioNetGen

    Get PDF
    Totowa, NJ. Please cite this article when referencing BioNetGen in future publications. Rule-based modeling involves the representation of molecules as structured objects and molecular interactions as rules for transforming the attributes of these objects. The approach is notable in that it allows one to systematically incorporate site-specific details about proteinprotein interactions into a model for the dynamics of a signal-transduction system, but the method has other applications as well, such as following the fates of individual carbon atoms in metabolic reactions. The consequences of protein-protein interactions are difficult to specify and track with a conventional modeling approach because of the large number of protein phosphoforms and protein complexes that these interactions potentially generate. Here, we focus on how a rule-based model is specified in the BioNetGen language (BNGL) and how a model specification is analyzed using the BioNetGen software tool. We also discuss new developments in rule-based modeling that should enable the construction and analyses of comprehensive models for signal transduction pathways and similarly large-scale models for other biochemical systems. Key Words: Computational systems biology; mathematical modeling; combinatorial complexity; software; formal languages; stochastic simulation; ordinary differential equations; protein-protein interactions; signal transduction; metabolic networks. 1

    SYNZIP Protein Interaction Toolbox: in Vitro and in Vivo Specifications of Heterospecific Coiled-Coil Interaction Domains

    Get PDF
    The synthetic biology toolkit contains a growing number of parts for regulating transcription and translation, but very few that can be used to control protein association. Here we report characterization of 22 previously published heterospecific synthetic coiled-coil peptides called SYNZIPs. We present biophysical analysis of the oligomerization states, helix orientations, and affinities of 27 SYNZIP pairs. SYNZIP pairs were also tested for interaction in two cell-based assays. In a yeast two-hybrid screen, >85% of 253 comparable interactions were consistent with prior in vitro measurements made using coiled-coil microarrays. In a yeast-signaling assay controlled by coiled-coil mediated scaffolding, 12 SYNZIP pairs were successfully used to down-regulate the expression of a reporter gene following treatment with α-factor. Characterization of these interaction modules dramatically increases the number of available protein interaction parts for synthetic biology and should facilitate a wide range of molecular engineering applications. Summary characteristics of 27 SYNZIP peptide pairs are reported in specification sheets available in the Supporting Information and at the SYNZIP Web site [http://keatingweb.mit.edu/SYNZIP/].National Science Foundation (U.S.) (NSF award MCB 0950233)National Institutes of Health (U.S.) (grant RO1 GM55040)National Institutes of Health (U.S.) (grant PN2 EY016546)National Institutes of Health (U.S.) (grant P50 GMO81879)National Science Foundation (U.S.). Synthetic Biology Engineering Research CenterHoward Hughes Medical Institut

    Engineered Protein Nano-Compartments for Targeted Enzyme Localization

    Get PDF
    Compartmentalized co-localization of enzymes and their substrates represents an attractive approach for multi-enzymatic synthesis in engineered cells and biocatalysis. Sequestration of enzymes and substrates would greatly increase reaction efficiency while also protecting engineered host cells from potentially toxic reaction intermediates. Several bacteria form protein-based polyhedral microcompartments which sequester functionally related enzymes and regulate their access to substrates and other small metabolites. Such bacterial microcompartments may be engineered into protein-based nano-bioreactors, provided that they can be assembled in a non-native host cell, and that heterologous enzymes and substrates can be targeted into the engineered compartments. Here, we report that recombinant expression of Salmonella enterica ethanolamine utilization (eut) bacterial microcompartment shell proteins in E. coli results in the formation of polyhedral protein shells. Purified recombinant shells are morphologically similar to the native Eut microcompartments purified from S. enterica. Surprisingly, recombinant expression of only one of the shell proteins (EutS) is sufficient and necessary for creating properly delimited compartments. Co-expression with EutS also facilitates the encapsulation of EGFP fused with a putative Eut shell-targeting signal sequence. We also demonstrate the functional localization of a heterologous enzyme (β-galactosidase) targeted to the recombinant shells. Together our results provide proof-of-concept for the engineering of protein nano-compartments for biosynthesis and biocatalysis

    Multisite Phosphorylation Provides an Effective and Flexible Mechanism for Switch-Like Protein Degradation

    Get PDF
    Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression

    Identification of ORC1/CDC6-Interacting Factors in Trypanosoma brucei Reveals Critical Features of Origin Recognition Complex Architecture

    Get PDF
    DNA Replication initiates by formation of a pre-replication complex on sequences termed origins. In eukaryotes, the pre-replication complex is composed of the Origin Recognition Complex (ORC), Cdc6 and the MCM replicative helicase in conjunction with Cdt1. Eukaryotic ORC is considered to be composed of six subunits, named Orc1–6, and monomeric Cdc6 is closely related in sequence to Orc1. However, ORC has been little explored in protists, and only a single ORC protein, related to both Orc1 and Cdc6, has been shown to act in DNA replication in Trypanosoma brucei. Here we identify three highly diverged putative T. brucei ORC components that interact with ORC1/CDC6 and contribute to cell division. Two of these factors are so diverged that we cannot determine if they are eukaryotic ORC subunit orthologues, or are parasite-specific replication factors. The other we show to be a highly diverged Orc4 orthologue, demonstrating that this is one of the most widely conserved ORC subunits in protists and revealing it to be a key element of eukaryotic ORC architecture. Additionally, we have examined interactions amongst the T. brucei MCM subunits and show that this has the conventional eukaryotic heterohexameric structure, suggesting that divergence in the T. brucei replication machinery is limited to the earliest steps in origin licensing

    Structural insights into the catalysis and regulation of E3 ubiquitin ligases

    Get PDF
    Covalent attachment (conjugation) of one or more ubiquitin molecules to protein substrates governs numerous eukaryotic cellular processes, including apoptosis, cell division and immune responses. Ubiquitylation was originally associated with protein degradation, but it is now clear that ubiquitylation also mediates processes such as protein–protein interactions and cell signalling depending on the type of ubiquitin conjugation. Ubiquitin ligases (E3s) catalyse the final step of ubiquitin conjugation by transferring ubiquitin from ubiquitin-conjugating enzymes (E2s) to substrates. In humans, more than 600 E3s contribute to determining the fates of thousands of substrates; hence, E3s need to be tightly regulated to ensure accurate substrate ubiquitylation. Recent findings illustrate how E3s function on a structural level and how they coordinate with E2s and substrates to meticulously conjugate ubiquitin. Insights regarding the mechanisms of E3 regulation, including structural aspects of their autoinhibition and activation are also emerging

    Synthetic biology: Understanding biological design from synthetic circuits

    Get PDF
    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics
    corecore