12 research outputs found

    Comparison of selected configuration management systems in Linux

    Get PDF
    The purpose of this article is to compare selected configuration management systems on Linux. These systems had to meet the condition of integration with Linux. The two of the most popular systems were chosen which are Puppet and Ansible. The comparison was based on a simple system configuration using these two systems in several aspects: installation, file and folder management, package management, user management, configuration of the Apache server and Firewall. Through this comparison, it was possible to determine which system is more suitable for a novice Linux system administrator

    Surface and trapping energies as predictors for the photocatalytic degradation of aromatic organic pollutants

    Get PDF
    In this study, anatase samples enclosed by the majority of three different crystal facets {0 0 1}, {1 0 0}, and {1 0 1} were successfully synthesized. These materials were further studied toward photocatalytic degradation of phenol and toluene as model organic pollutants in water and gas phases. The obtained results were analyzed concerning their surface structure, reaction type, and surface development. Moreover, the regression model was created to find the correlation between the possible predictors and the photodegradation rate constants (k). From the studied factors, the trapping energy of charge carriers at the surface was found to be the most significant one, exponentially affecting the observed k. This resulted in the overall per-surface activity between the samples being in the order {1 0 1} > {1 0 0} > {0 0 1}. Further introduction of the surface energy (Esurf) to the regression model and the number of possible trapping centers per number of pollutant’s molecules (ntrap·n–1) improved the model accuracy, simultaneously showing the dependence on the reaction type. In the case of phenol photocatalytic degradation, the best accuracy was observed for the model including Esurf ·(ntrap·n–1)1/2 relation, while for the toluene degradation, it included Esurf2 and the S·n–1 ratio, where S is the simple surface area. Concerning different surface features which influence photocatalytic performance and are commonly discussed in the literature, the results presented in this study suggest that trapping is of particular importance.publishe

    Crystal Facet Engineering of TiO<sub>2</sub> from Theory to Application

    No full text
    Recently, the surface structure effect on photocatalytic activity has gathered increasing attention due to its reported influence on the charge carrier trapping and separation. Detailed control over the surface structure can be achieved by exposing the specific crystal facets. As a result, the photogenerated electrons and holes can be effectively separated between the different facets of semiconductor crystals. TiO2 is the most studied photocatalyst, with the particles exposing {0 0 1}, {1 0 0}, {1 0 1}, {1 1 0}, {1 1 1}, and {1 0 5} crystal facets. The performed studies have shown that the efficiency of the photocatalytic process strongly depends on the nature of the crystal facet exposed at the photocatalyst surface. In this regard, this chapter focuses on the comparison of possible surface-related parameters and photocatalytic activity of anatase, rutile, and brookite polymorphs with exposed different crystal facets. Particularly, computational data on their different possible surface structures are summarized, focusing on the geometry, energy, and possible reconstructions. This is followed by the general description of the hypothetical Wulff constructions and existing stabilization/synthesis strategies. Such an approach could help to further design, simulate, and optimize photocatalyst surface for efficient photoreduction and photooxidation processes

    Application of Spinel and Hexagonal Ferrites in Heterogeneous Photocatalysis

    No full text
    Semiconducting materials display unique features that enable their use in a variety of applications, including self-cleaning surfaces, water purification systems, hydrogen generation, solar energy conversion, etc. However, one of the major issues is separation of the used materials from the process suspension. Therefore, chemical compounds with magnetic properties have been proposed as crucial components of photocatalytic composites, facilitating separation and recovery of photocatalysts under magnetic field conditions. This review paper presents the current state of knowledge on the application of spinel and hexagonal ferrites in heterogeneous photocatalysis. The first part focuses on the characterization of magnetic (nano)particles. The next section presents the literature findings on the single-phase magnetic photocatalyst. Finally, the current state of scientific knowledge on the wide variety of magnetic-photocatalytic composites is presented. A key aim of this review is to indicate that spinel and hexagonal ferrites are considered as an important element of heterogeneous photocatalytic systems and are responsible for the effective recycling of the photocatalytic materials

    A Comparative Analysis of Waste Biomass Pyrolysis in Py-GC-MS and Fixed-Bed Reactors

    Get PDF
    Pyrolysis is one of the most popular methods for the thermal conversion of biomass-derived materials, which can be applied to produce valuable products such as biochar, bio-oil, and pyrolysis gas. However, this does not change the need for more precise data on the products obtained from such processes under different conditions, using different types of reactors or types of biomass material. Pyrolysis products can have a high energy value and have been extensively studied. In the presented research, three potential energy feedstocks from waste biomass, wheat cereal straw (CS), tobacco waste (TW), and furniture waste (FW) were comprehensively evaluated in terms of product yields, as well as the chemical composition of the volatile products of the pyrolysis process using the pyrolysis–gas chromatography–mass spectrometry technique and the chemical distribution of the products obtained under fixed-bed pyrolysis conditions. The obtained results were compared to data from the literature, which provided thorough information on the pyrolysis of biomass materials in diverse systems. The research identified the primary elements of the liquid fraction, such as N-compounds, furans, phenols, benzene, PAHs, aldehyde-ketone-alcohol, and organic acids, which were the main constituents of the liquid fraction, and the concentration of non-condensable components of gaseous products. The research discussed in this article provides a comprehensive approach to the thermal conversion of biomass materials, which, depending on their origin, processing conditions, and methodologies, can be utilised for more than only energy production

    Experimental and numerical analysis of the biomass innovativ solar pyrolysis process

    No full text
    Paper present the experimental and numerical analysis of biomass photopyrolysis process. The experimental tests is performed on the solar pyrolysis installation, designed in Institute of Thermal Technology, Gliwice. It consist of the copper reactor powered by artificial light simulating sun. The paper shows the result of the solar pyrolysis of wood. The yield of the main fraction as a function of the process temperature is presented. Additionally the gas composition is determined. The numerical model is prepared in the Ansys Fluent 18.2 software, which allow at the same time for capturing geometry of the real system and easy change of input data. The results indicate that both the product yields (liquid, solid and gaseous) and gas components shares are strongly influenced by pyrolysis parameters and feedstock composition

    Preparation and Characterization of Defective TiO2. The Effect of the Reaction Environment on Titanium Vacancies Formation

    No full text
    Among various methods of improving visible light activity of titanium(IV) oxide, the formation of defects and vacancies (both oxygen and titanium) in the crystal structure of TiO2 is an easy and relatively cheap alternative to improve the photocatalytic activity. In the presented work, visible light active defective TiO2 was obtained by the hydrothermal reaction in the presence of three different oxidizing agents: HIO3, H2O2, and HNO3. Further study on the effect of used oxidant and calcination temperature on the physicochemical and photocatalytic properties of defective TiO2 was performed. Obtained nanostructures were characterized by X-ray diffractometry (XRD), specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. Degradation of phenol as a model pollutant was measured in the range of UV-Vis and Vis irradiation, demonstrating a significant increase of photocatalytic activity of defective TiO2 samples above 420 nm, comparing to non-defected TiO2. Correlation of EPR, UV-Vis, PL, and photodegradation results revealed that the optimum concentration of HIO3 to achieve high photocatalytic activity was in the range of 20&ndash;50 mol%. Above that dosage, titanium vacancies amount is too high, and the obtained materials&rsquo; photoactivity was significantly decreased. Studies on the photocatalytic mechanism using defective TiO2 have also shown that &bull;O2&minus; radical is mainly responsible for pollutant degradation

    Defective TiO2 Core-Shell Magnetic Photocatalyst Modified with Plasmonic Nanoparticles for Visible Light-Induced Photocatalytic Activity

    No full text
    In the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and Vis light ranges. Moreover, metal NPs deposition on the magnetic core allowed for the effective separation and reuse of the nanometer-sized photocatalyst from the suspension after the treatment process. The obtained Fe3O4@SiO2/d-TiO2-Pt/Cu photocatalysts were characterized by X-ray diffractometry (XRD) and specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Further, the mechanism of phenol degradation and the role of four oxidative species (h+, e&minus;, &bull;OH, and &bull;O2&minus;) in the studied photocatalytic process were investigated
    corecore