129 research outputs found

    Muscle preservation in long duration space missions: The eccentric factor

    Get PDF
    In our quest to understand, and eventually prevent, the loss of muscle strength and mass that occurs during prolonged periods in microgravity, we have organized our research approach by systems and useful terrestrial analogs. Our hypothesis was that: The eccentric movement, or lengthening component, of dynamic, resistive exercise, is required for the production of the greatest gains in strength and muscle hypertrophy in the most metabolically efficient, and time effective manner. The exercises selected were leg presses, leg (knee) extensions, and hamstring curls. In this 30 week study, 38 male subjects, between the ages of 25 and 50, were divided into four groups. One group performed 5 sets of 8-12 repetitions per set of conventional concentric/eccentric (CON/ECC) exercises. Another group performed only the concentric (CON) movement on the same schedule. The third group performed twice the number of sets in the concentric only mode (CON/CON), and the last group served as controls. We interpret these data as convincing evidence that the eccentric component of heavy resistance training is required along with the concentric for the most effective increase in strength and muscle fiber size in the least time. We also conclude that such heavy exercise of any such muscle group need not consume inordinately long periods of time, and is quite satisfactorily effective when performed on 72 hour centers

    Variable-frequency-train stimulation of skeletal muscle after spinal cord injury

    Get PDF
    Skeletal muscle, after spinal cord injury (SCI), becomes highly susceptible to fatigue. Variable-frequency trains (VFTs) enhance force in fatigued human skeletal muscle of able-bodied (AB) individuals. VFTs do this by taking advantage of the catch-like property of skeletal muscle. However, mechanisms responsible for fatigue in AB and SCI subjects may not be the same, and the efficacy of VFT stimulation after SCI is unknown. Accordingly, we tested the hypothesis that VFT stimulation would augment torque-time integral in SCI subjects. The quadriceps femoris muscle was stimulated with constant frequency trains (CFTs) (six 200 s square wave pulses separated by 70 ms) or VFTs (a train identical to the CFT, except that the first two pulses were separated by 5 ms) in SCI and AB subjects. After 180 contractions (50% duty cycle), isometric peak torque decreased 44, 56, and 67 percent, in the AB (n = 10), acute SCI (n = 10), and chronic SCI (n = 12) groups, respectively. In fatigued muscle, VFTs enhanced the torque-time integral by 18 percent in AB subjects and 6 percent in chronic SCI patients, and had no effect in acute SCI patients when compared to the corresponding CFT. The much faster rise times in SCI subjects (~80 ms vs. 120 ms in AB subjects) probably contributed to the inability of VFTs to enhance torque-time integrals in SCI patients. The results suggest that the use of VFT stimulation in patients with SCI may not be as efficacious as it is in AB persons

    Oxygen cost of dynamic or isometric exercise relative to recruited muscle mass

    Get PDF
    BACKGROUND: Oxygen cost of different muscle actions may be influenced by different recruitment and rate coding strategies. The purpose of this study was to account for these strategies by comparing the oxygen cost of dynamic and isometric muscle actions relative to the muscle mass recruited via surface electrical stimulation of the knee extensors. METHODS: Comparisons of whole body pulmonary Δ [Formula: see text] O(2 )were made in seven young healthy adults (1 female) during 3 minutes of dynamic or isometric knee extensions, both induced by surface electrical stimulation. Recruited mass was quantified in T(2 )weighted spin echo magnetic resonance images. RESULTS: The Δ [Formula: see text] O(2 )for dynamic muscle actions, 242 ± 128 ml • min(-1 )(mean ± SD) was greater (p = 0.003) than that for isometric actions, 143 ± 99 ml • min(-1). Recruited muscle mass was also greater (p = 0.004) for dynamic exercise, 0.716 ± 282 versus 0.483 ± 0.139 kg. The rate of oxygen consumption per unit of recruited muscle ([Formula: see text]) was similar in dynamic and isometric exercise (346 ± 162 versus 307 ± 198 ml • kg(-1 )• min(-1); p = 0.352), but the [Formula: see text] calculated relative to initial knee extensor torque was significantly greater during dynamic exercise 5.1 ± 1.5 versus 3.6 ± 1.6 ml • kg(-1 )• Nm(-1 )• min(-1 )(p = 0.019). CONCLUSION: These results are consistent with the view that oxygen cost of dynamic and isometric actions is determined by different circumstances of mechanical interaction between actin and myosin in the sarcomere, and that muscle recruitment has only a minor role

    Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases

    Get PDF
    Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P = 1.3×10−10) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P = 1.7×10−4, 1.8×10−4, and 2.2×10−4 respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates

    Stakeholder involvement in systematic reviews:a scoping review

    Get PDF
    Abstract Background There is increasing recognition that it is good practice to involve stakeholders (meaning patients, the public, health professionals and others) in systematic reviews, but limited evidence about how best to do this. We aimed to document the evidence-base relating to stakeholder involvement in systematic reviews and to use this evidence to describe how stakeholders have been involved in systematic reviews. Methods We carried out a scoping review, following a published protocol. We searched multiple electronic databases (2010–2016), using a stepwise searching approach, supplemented with hand searching. Two authors independently screened and discussed the first 500 abstracts and, after clarifying selection criteria, screened a further 500. Agreement on screening decisions was 97%, so screening was done by one reviewer only. Pre-planned data extraction was completed, and the comprehensiveness of the description of methods of involvement judged. Additional data extraction was completed for papers judged to have most comprehensive descriptions. Three stakeholder representatives were co-authors for this systematic review. Results We included 291 papers in which stakeholders were involved in a systematic review. Thirty percent involved patients and/or carers. Thirty-two percent were from the USA, 26% from the UK and 10% from Canada. Ten percent (32 reviews) were judged to provide a comprehensive description of methods of involving stakeholders. Sixty-nine percent (22/32) personally invited people to be involved; 22% (7/32) advertised opportunities to the general population. Eighty-one percent (26/32) had between 1 and 20 face-to-face meetings, with 83% of these holding ≤ 4 meetings. Meetings lasted 1 h to ½ day. Nineteen percent (6/32) used a Delphi method, most often involving three electronic rounds. Details of ethical approval were reported by 10/32. Expenses were reported to be paid to people involved in 8/32 systematic reviews. Discussion/conclusion We identified a relatively large number (291) of papers reporting stakeholder involvement in systematic reviews, but the quality of reporting was generally very poor. Information from a subset of papers judged to provide the best descriptions of stakeholder involvement in systematic reviews provide examples of different ways in which stakeholders have been involved in systematic reviews. These examples arguably currently provide the best available information to inform and guide decisions around the planning of stakeholder involvement within future systematic reviews. This evidence has been used to develop online learning resources. Systematic review registration The protocol for this systematic review was published on 21 April 2017. Publication reference: Pollock A, Campbell P, Struthers C, Synnot A, Nunn J, Hill S, Goodare H, Watts C, Morley R: Stakeholder involvement in systematic reviews: a protocol for a systematic review of methods, outcomes and effects. Research Involvement and Engagement 2017, 3:9. https://doi.org/10.1186/s40900-017-0060-4

    A Conserved PHD Finger Protein and Endogenous RNAi Modulate Insulin Signaling in Caenorhabditis elegans

    Get PDF
    Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently, increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-16–dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression of numerous downstream genes.Leukemia & Lymphoma Society of America (3260-07 Special Fellow Award)Arnold and Mabel Beckman Foundation (Young Investigator Award)United States. National Institutes of Health (Director's New Innovator Award (1 DP2 OD006412-01))United States. National Institutes of Health (grant GM66269)modENCODE (grant U01 HG004270)United States. National Institutes of Health (training grant 5T32 GM07088-34
    • …
    corecore