591 research outputs found

    Development and Application of the Power Plant Real-Time Temperature and Stress Monitoring System

    Get PDF
    The paper presents a method of temperature and stress estimation in pressure components of conventional or nuclear power plants. The proposed algorithm can be applied without the information concerning the thermal boundary condition on the component inner surfaces and it is fast enough to be applied in an online mode. The solution is possible thanks to “measured” temperature histories determined in easily accessible points located on the component outer surface. The presented model has been recently verified analytically, numerically, and experimentally. The proposed algorithm was used to calculate the transient temperature and stress distribution in the outlet header of a steam reheater and the results indicate that the component lower part is loaded the most, but allowable stresses are not exceeded. If the presented heating process was shortened, the calculated stresses would exceed the allowable values. Monitoring the boiler thermal and strength operating conditions makes it possible to identify dangerous loads of the power boiler pressure elements during transient-state operations. The presented method for controlling thermal and pressure-related stresses is suitable for nuclear power plants because it does not require drilling holes for sensors in the pressure element walls

    Design and operation of a modern Polish plant for plastic waste recycling through the degradative depolymerization process : a case study

    Get PDF
    The paper describes an installation for the degradative depolymerization of polyolefin materials obtained from wastes, hereinafter also referred to as depolymerization for simplicity. The plant, on an industrial scale, is one of the few operating in Poland. However, it is one of the most modern plants in this industry. Design solutions, construction of particular technological lines, compliance with national and EU regulations and the high level of process safety were described in this paper as well as compared to other plants of this type in Poland. Different solutions were presented in drawings and photos of the plant and in fragmentary technological diagrams. The types of waste and the methods of their processing by the plant were also characterized in accordance with the applicable regulations. The waste throughput is from 2000 to 4000 kg/h, while the efficiency of the depolymerization installation itself is 1500 kg/h. The industrial-scale depolymerization process is carried out in one or two stages: by homogenization (extraction) at a temperature up to 200 °C and depolymerization at temperatures up to 400 °C. The obtained products (energy goods) are sold for further processing. The processes, devices and methods are characterized by novel, innovative solutions, covered by a number of patents, which are also described below. The advantage of the presented technology is the substantial simplification of the process and thereby a considerable reduction in investment costs. Among others, the processes of distillation and rectification (low- and negative-pressure) were abandoned

    Modeling of steady and transient temperature distribution in the device for measuring the thermal conductivity

    Get PDF
    The aim of this paper is the presentation of the method for thermal conductivity measurement and numerical modeling of temperature distribution in apparatus for measuring the thermal conductivity. Experimental studies will be carried out in transient state until the steady state heat conduction in apparatus is achieved. The calculated and measured temperature distribution will be compared. The time to steady state in apparatus for different samples will be estimated based on numerical and experimental results. The influence of the contact resistance between the sample and the measuring device will be analyzed

    Modeling of gas flow through valve (CRV)

    Get PDF
    The aim of this work is to calculate the effective area of a compressor recirculation valve. Analytical solution and numerical modeling for compressible flow through a valve will be presented. Critical parameters of flow will be determined. Numerical modeling will be performed using ANSYS FLUENT. The results of the numerical solution will be compared with the analytical solutions

    Hospitality on the Camino de Santiago: Clues from Interviews with Hospitaleros During the Pandemic

    Get PDF
    The practice of making the pilgrimage along the Camino de Santiago (the Way of Saint James), one of the three most important medieval pilgrimage routes in Europe, has undergone various transformations related to religious, cultural and political considerations. In 2019, the Pilgrim’s Reception Office in Santiago de Compostela recorded 327,378 pilgrims from all over the world. The aim of this research was to understand the impact of the pandemic on hospitaleros – the individuals who host pilgrims on the Camino de Santiago – and perform a comparative analysis against the hotel industry. In particular, it was noted that in a majority of studies and papers on the tourism and hotel industry, the primary criteria of evaluation were economic issues and the impact of the pandemic on the economy in terms of supply–demand and seller–buyer relationships. The study examined the characteristics of hospitality, which – in an etymological sense – is understood as cordiality and selfless kindness shown to strangers and is regarded in culture as one of the most valuable attitudes towards other human beings. In public discourse, the term most frequently appears in reference to travels, pilgrimages, tourism and other forms of intercultural contact, including diplomacy and migration policy

    Analysis of microtomographic images in automatic defect localization and detection

    Get PDF
    The paper presents a fast method of fully automatic localization and classification of defects in aluminium castings based on computed microtomography images. In the light of current research and based on available publications, where such analysis is made on the basis of images obtained from standard radiography (x-ray), this is a new approach which uses microtomographic images (μ-CT). In addition, the above-mentioned solutions most often analyze a pre-separated portion of an image, which requires the initial operator interference. The authors’ own pre-processing methods, which allow to separate the element area and potential defect areas from μ-CT images, and methods of extraction of selected features describing these areas have been proposed in the solution discussed here. A neural network trained using the Levenberg–Marquardt method with error backpropagation has been used as a classifier. The optimal network structure 20–4–1 and a set of 20 features describing the analysed areas have been determined as a result of performed tests. The applied solutions have provided 89% correct detection for any defect size and 96.73% for large defects, which is comparable to the results obtained from methods using x-ray images. This has confirmed that it is possible to use μ-CT images in automatic defect localization in 3D. Thanks to this method, quantitative analysis of aluminium castings can be carried out without user interaction and fully automated

    Characteristics of plastic waste processing in the modern recycling plant operating in Poland

    Get PDF
    Although Poland is one of the leading recipients of the waste stream in the European Union (EU), it is at the same time below the average in terms of efficiency of their use/utilization. The adopted technological solutions cause waste processing rates to be relatively low in Poland. As a result, the report of the Early Warning and Response System (EWRS) of the EU indicated Poland as one of the 14 countries of the EU which are at risk in terms of possibility of achieving 50% recycling of waste. This article discusses the implemented technological solutions, and shows the profitability of the investment and the values of the process heat demand both for extractor and reactor. The experimental part analyzed the composition of the input and output of the process and compared it to the required fuel specifications. Attention was drawn to the need to improve the recycling process in order to increase the quality of manufactured fuel components. As potential ways of solving the problem of low fuel quality, cleaning the sorted reaction mass from solid particles and extending the technological line with a distillation column have been proposed. The recommended direction of improvement of the technology is also the optimization of the process of the reactor’s purification and removal of contaminants

    Mechanical Properties of Graphene Oxide-Copper Composites

    Get PDF
    Due to their characteristics, sintered Cu-C composites are materials used in electrical equipment. These characteristics include high electrical conductivity, thermal conductivity and excellent resistance to abrasion. Currently, graphite nanopowder is used successfully as a carbon material. Metal-graphite, which is created on its basis, exists in different proportions of graphite to metal. A larger graphite content has a positive effect on smaller wear of commutators and rings. In contrast, a material with a higher copper content is used at high current densities. An example of such machines is a DC motor starter characterized by low voltage and large current. Tribological properties of Cu-C composites depend on the form of carbon they include. Owing to the capability to manufacture graphene, it has become possible to produce composites with its content. The present study tested the effect of a graphene oxide content on tribological properties in contact with steel. Tests were conducted on a ball-on-disk apparatus in conditions of dry friction. Microscopic observation was performed on the Hitachi SU70 field emission electron microscope. EDS analyses were performed using the Thermo Scientific X-ray Microanalysis system. Disk wear and surface geometrical structure parameters (SGP) of the samples after tribological tests were determined on the basis of measurements made on the Talysurf 3D contact profilometer from Taylor Hobson

    The hybrid sorption-compression refrigeration cycle control system

    Get PDF
    The requirements for environmentally friendly refrigerants promote the application of both CO2 and water as working fluids. Both solutions have disadvantages resulting from the high temperature limit for CO2 and the low temperature limit for water. This can be avoided by the application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption cycle which is used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low-temperature renewable heat source such as solar collectors or waste heat sources. This solution has been developed by the authors of this paper and has not been reported in any other literature source. The different ambient conditions over the course of the year require specially designed controlprocedures and the automation system. The algorithm has to control positive and negative heat sources operation, valve actions, pumps, fans and compressor operation. In the control algorithm, the ambient temperature and solar conditions or other waste heat sources have to be introduced as control parameters, optimised to achieve maximum efficiency of the whole system. The refrigeration effect as a parameter has to be considered both for the refrigeration capacity as well as the CO2 evaporation temperature
    corecore