113 research outputs found

    Deletion of fabN in Enterococcus faecalis results in unsaturated fatty acid auxotrophy and decreased release of inflammatory cytokines

    Get PDF
    The Gram-positive bacterium Enterococcus faecalis can cause life-threatening infections and is resistant to several commonly used antibiotics. The type II fatty acid pathway in bacteria is discussed as a potential target for antimicrobial therapy. However, it was shown that inhibition or deletion of its enzymes can be rescued in Gram-positive bacteria by supplementation with fatty acids. Here we show that by deletion of the fabN gene, which is essential for unsaturated fatty acid (UFA) synthesis in E. faecalis, growth is impaired but can be rescued by supplementation with oleic acid or human serum. Nonetheless, we demonstrate alterations of the UFA profile after supplementation with oleic acid in the fabN mutant using a specific glycolipid. In addition, we demonstrate that cytokine release invitro is almost abolished after stimulation of mouse macrophages by the mutant in comparison to the wild type. The results indicate that fabN is not a suitable target for antimicrobials as UFA auxotrophy can be overcome. However, deletion of fabN resulted in a decreased inflammatory response indicating that fabN and resulting UFA synthesis are relevant for virulence

    Interaction of human mannose-binding lectin (MBL) with Yersinia enterocolitica lipopolysaccharide

    Get PDF
    tThe lipopolysaccharide (LPS) is involved in the interaction between Gram-negative pathogenic bacteriaand host. Mannose-binding lectin (MBL), complement-activating soluble pattern-recognition receptortargets microbial glycoconjugates, including LPS. We studied its interactions with a set of Yersinia ente-rocolitica O:3 LPS mutants. The wild-type strain LPS consists of lipid A (LA) substituted with an inner coreoligosaccharide (IC) which in turn is substituted either with the O-specific polysaccharide (OPS) or theouter core hexasaccharide (OC), and sometimes also with the enterobacterial common antigen (ECA). TheLPS mutants produced truncated LPS, missing OPS, OC or both, or, in addition, different IC constituentsor ECA. MBL bound to LA-IC, LA-IC-OPS and LA-IC-ECA but not LA-IC-OC structures. Moreover, LA-IC sub-stitution with both OPS and ECA prevented the lectin binding. Sequential truncation of the IC heptosesdemonstrated that the MBL targets the IC heptose region. Furthermore, microbial growth temperatureinfluenced MBL binding; binding was stronger to bacteria grown at room temperature (22◦C) than to bac-teria grown at 37◦C. In conclusion, our results demonstrate that MBL can interact with Y. enterocoliticaLPS, however, the in vivo significance of that interaction remains to be elucidated

    N-(2-Hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1Hbenzimidazol-1-yl)propyl]piperidine-4-Carboxamide (D2AAK4), a Multi-Target Ligand of Aminergic GPCRs, as a Potential Antipsychotic

    Get PDF
    N-(2-hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1H-benzimidazol -1-yl)propyl]piperidine-4-carboxamide (D2AAK4) is a multitarget ligand of aminergic G protein-coupled receptors (GPCRs) identified in structure-based virtual screening. Here we present detailed in vitro, in silico and in vivo investigations of this virtual hit. D2AAK4 has an atypical antipsychotic profile and low affinity to off-targets. It interacts with aminergic GPCRs, forming an electrostatic interaction between its protonatable nitrogen atom and the conserved Asp 3.32 of the receptors. At the dose of 100 mg/kg D2AAK4 decreases amphetamine-induced hyperactivity predictive of antipsychotic activity, improves memory consolidation in passive avoidance test and has anxiogenic properties in elevated plus maze test (EPM). Further optimization of the virtual hit D2AAK4 will be aimed to balance its multitarget profile and to obtain analogs with anxiolytic activity.The research was performed under OPUS grant from National Science Center (NCN, Poland), grant number 2017/27/B/NZ7/01767 (to A.A.K). Calculations were partially performed under a computational grant by Interdisciplinary Center for Mathematical and Computational Modeling (ICM), Warsaw, Poland, grant number G30-18 (to A.A.K.), under resources and licenses from CSC, Finland (to A.A.K). In vitro pharmacology assays were performed with support from the Spanish Ministry of Economy and Competitiveness (MINECO) (grant number SAF2014-57138-C2-1-R to M.C.). A.G.S. acknowledges funding from XUNTA de Galicia (Spain)S

    Serotype O:8 isolates in the Yersinia pseudotuberculosis complex have different O-antigen gene clusters and produce various forms of rough LPS

    Get PDF
    In Yersinia pseudotuberculosis complex, the O-antigen of LPS is used for the serological characterization of strains, and 21 serotypes have been identified to date. The O-antigen biosynthesis gene cluster and corresponding O-antigen structure have been described for 18, leaving O:8, O:13 and O:14 unresolved. In this study, two O:8 isolates were examined. The O-antigen gene cluster sequence of strain 151 was near identical to serotype O:4a, though a frame-shift mutation was found in ddhD, while No. 6 was different to 151 and carried the O:1b gene cluster. Structural analysis revealed that No. 6 produced a deeply truncated LPS, suggesting a mutation within the waaF gene. Both ddhD and waaF were cloned and expressed in 151 and No. 6 strains, respectively, and it appeared that expression of ddhD gene in strain 151 restored the O-antigen on LPS, while waaF in No. 6 resulted in an LPS truncated less severely but still without the O-antigen, suggesting that other mutations occurred in this strain. Thus, both O:8 isolates were found to be spontaneous O-antigen-negative mutants derived from other validated serotypes, and we propose to remove this serotype from the O-serotyping scheme, as the O:8 serological specificity is not based on the O-antigen.Peer reviewe

    Serological characterization of the enterobacterial common antigen substitution of the lipopolysaccharide of "Yersinia enterocolitica" O:3

    Get PDF
    Enterobacterial common antigen (ECA) is a polysaccharide present in all members of Enterobacteriaceae anchored either via phosphatidylglycerol (PG) or LPS to the outer leaflet of the outer membrane (ECAPG and ECALPS, respectively). Only the latter form is ECAimmunogenic. We previously demonstrated that Yersinia enterocolitica O: 3 and its rough (Ospecific polysaccharide-negative) mutants were ECA-immunogenic, suggesting that they contained ECALPS; however, it was not known which part of the LPS core region was involved in ECA binding. To address this, we used a set of three deep-rough LPS mutants for rabbit immunization. The polyvalent antisera obtained were: (i) analysed for the presence of anti-LPS and anti-ECA antibodies; (ii) treated with caprylic acid (CA) to precipitate IgM antibodies and protein aggregates; and (iii) adsorbed with live ECA-negative bacteria to obtain specific anti-ECA antisera. We demonstrated the presence of antibodies specific for both ECAPG and ECALPS in all antisera obtained. Both CA treatment and adsorption with ECA-negative bacteria efficiently removed anti-LPS antibodies, resulting in specific anti-ECA sera. The LPS of the ECALPS-positive deepest-rough mutant contained only lipid A and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residues of the inner core, suggesting that ECALPS was linked to the Kdo region of LPS in Y. enterocolitica O:3

    Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy

    Get PDF
    Molecular allergology research has provided valuable information on the structure and function of single allergenic molecules. There are several allergens in food and inhalant allergen sources that are able to interact with lipid ligands via different structural features: hydrophobic pockets, hydrophobic cavities, or specialized domains. For only a few of these allergens information on their associated ligands is already available. Several of the allergens are clinically relevant, so that it is highly probable that the individual structural features with which they interact with lipids have a direct effect on their allergenic potential, and thus on allergy development. There is some evidence for a protective effect of lipids delaying the enzymatic digestion of the peanut (Arachis hypogaea) allergen Ara h 8 (hydrophobic pocket), probably allowing this molecule to get to the intestinal immune system intact (sensitization). Oleosins from different food allergen sources are part of lipid storage organelles and potential marker allergens for the severity of the allergic reaction. House dust mite (HDM), is more often associated with allergic asthma than other sources of inhalant allergens. In particular, lipid-associated allergens from Dermatophagoides pteronyssinus which are Der p 2, Der p 5, Der p 7, Der p 13, Der p 14, and Der p 21 have been reported to be associated with severe allergic reactions and respiratory symptoms such as asthma. The exact mechanism of interaction of these allergens with lipids still has to be elucidated. Apart from single allergens glycolipids have been shown to directly induce allergic inflammation. Several—in parts conflicting—data exist on the lipid (and allergen) and toll-like receptor interactions. For only few single allergens mechanistic studies were performed on their interaction with the air-liquid interface of the lungs, in particular with the surfactant components SP-A and SP-D. The increasing knowledge on protein-lipid-interaction for lipophilic and hydrophobic food and inhalant allergens on the basis of their particular structure, of their capacity to be integral part of membranes (like the oleosins), and their ability to interact with membranes, surfactant components, and transport lipids (like the lipid transfer proteins) are essential to eventually clarify allergy and asthma development

    Lipid Mediators From Timothy Grass Pollen Contribute to the Effector Phase of Allergy and Prime Dendritic Cells for Glycolipid Presentation

    Get PDF
    Plant pollen are an important source of antigens that evoke allergic responses. Protein antigens have been the focus of studies aiming to elucidate the mechanisms responsible for allergic reactions to pollen. However, proteins are not the sole active agent present in pollen. It is known that pollen grains contain lipids essential for its reproduction and bioactive lipid mediators. These small molecular compounds are co-delivered with the allergens and hence have the potential to modulate the immune response of subjects by activating their innate immune cells. Previous reports showed that pollen associated lipid mediators exhibited neutrophil- and eosinophil-chemotactic activity and induced polarization of dendritic cells (DCs) toward a Th2-inducing phenotype. In our study we performed chemical analyses of the pollen associated lipids, that are rapidly released upon hydration. As main components we have identified different types of phytoprostanes (PhytoPs), and for the first time phytofurans (PhytoFs), with predominating 16-F1t-PhytoPs (PPF1-I), 9-F1t-PhytoPs (PPF1-II), 16-E1t-PhytoPs (PPE1-I) and 9-D1t-PhytoPs (PPE1-II), and 16(RS)-9-epi-ST-Δ14-10-PhytoFs. Interestingly 16-E1t-PhytoP and 9-D1t-PhytoPs were found to be bound to glycerol. Lipid-containing samples (aqueous pollen extract, APE) induced murine mast cell chemotaxis and IL-6 release, and enhanced their IgE-dependent degranulation, demonstrating a role for these lipids in the immediate effector phase of allergic inflammation. Noteworthy, mast cell degranulation seems to be dependent on glycerol-bound, but not free phytoprostanes. On murine dendritic cells, APE selectively induced the upregulation of CD1d, likely preparing lipid-antigen presentation to iNKT cells. Our report contributes to the understanding of the activity of lipid mediators in the immediate effector phase of allergic reactions but identifies a yet undescribed pathway for the recognition of pollen-derived glycolipids by iNKT cells

    A scoping study of interventions to increase the uptake of physical activity (PA) amongst individuals with mild-to-moderate depression (MMD)

    Get PDF
    Background - Depression is the largest contributor to disease burden globally. The evidence favouring physical activity as a treatment for mild-to-moderate depression is extensive and relatively uncontested. It is unclear, however, how to increase an uptake of physical activity amongst individuals experiencing mild-to-moderate depression. This leaves professionals with no guidance on how to help people experiencing mild-to-moderate depression to take up physical activity. The purpose of this study was to scope the evidence on interventions to increase the uptake of physical activity amongst individuals experiencing mild-to-moderate depression, and to develop a model of the mechanisms by which they are hypothesised to work. Methods - A scoping study was designed to include a review of primary studies, grey literature and six consultation exercises; two with individuals with experience of depression, two pre-project consultations with physical activity, mental health and literature review experts, one with public health experts, and one with community engagement experts. Results - Ten papers met the inclusion criteria and were included in the review. Consultation exercises provided insights into the mechanisms of an uptake of physical activity amongst individuals experiencing mild-to-moderate depression; evidence concerning those mechanisms is (a) fragmented in terms of design and purpose; (b) of varied quality; (c) rarely explicit about the mechanisms through which the interventions are thought to work. Physical, environmental and social factors that may represent mediating variables in the uptake of physical activity amongst people experiencing mild-to-moderate depression are largely absent from studies. Conclusions - An explanatory model was developed. This represents mild-to-moderate depression as interfering with (a) the motivation to take part in physical activity and (b) the volition that it is required to take part in physical activity. Therefore, both motivational and volitional elements are important in any intervention to increase physical activity in people with mild-to-moderate depression. Furthermore, mild-to-moderate depression-specific factors need to be tackled in any physical activity initiative, via psychological treatments such as Cognitive Behavioural Therapy. We argu

    Angiogenic Activity of Sera from Pulmonary Tuberculosis Patients in Relation to IL-12p40 and TNFα Serum Levels

    Get PDF
    The role of angiogenesis in the pathogenesis of tuberculosis (TB) is not clear. The aim of this study was to examine the effect of sera from TB patients on angiogenesis induced by different subsets of normal human mononuclear cells (MNC) in relation to IL-12p40 and TNFα serum levels. Serum samples from 36 pulmonary TB patients and from 22 healthy volunteers were evaluated. To assess angiogenic reaction the leukocytes-induced angiogenesis test according to Sidky and Auerbach was performed. IL-12p40 and TNFα serum levels were evaluated by ELISA. Sera from TB patients significantly stimulated angiogenic activity of MNC compared to sera from healthy donors and PBS (p < 0.001). The number of microvessels formed after injection of lymphocytes preincubated with sera from TB patients was significantly lower compared to the number of microvessels created after injection of MNC preincubated with the same sera (p < 0.016). However, the number of microvessels created after the injection of lymphocytes preincubated with sera from healthy donors or with PBS alone was significantly higher (p < 0.017). The mean levels of IL-12p40 and TNFα were significantly elevated in sera from TB patients compared to healthy donors. We observed a correlation between angiogenic activity of sera from TB patients and IL-12p40 and TNFα serum levels (p < 0.01). Sera from TB patients constitute a source of mediators that participate in angiogenesis and prime monocytes for production of proangiogenic factors. The main proangiogenic effect of TB patients’ sera is mediated by macrophages/monocytes. TNFα and IL-12p40 may indirectly stimulate angiogenesis in TB
    corecore