13 research outputs found

    When do Bursts Matter in the Primary Motor Cortex? Investigating Changes in the Intermittencies of Beta Rhythms Associated With Movement States

    Get PDF
    Brain activity exhibits significant temporal structure that is not well captured in the power spectrum. Recently, attention has shifted to characterising the properties of intermittencies in rhythmic neural activity (i.e. bursts), yet the mechanisms regulating them are unknown. Here, we present evidence from electrocorticography recordings made from the motor cortex to show that the statistics of bursts, such as duration or amplitude, in beta frequency (14-30Hz) rhythms significantly aid the classification of motor states such as rest, movement preparation, execution, and imagery. These features reflect nonlinearities not detectable in the power spectrum, with states increasing in nonlinearity from movement execution to preparation to rest. Further, we show using a computational model of the cortical microcircuit, constrained to account for burst features, that modulations of laminar specific inhibitory interneurons are responsible for temporal organization of activity. Finally, we show that temporal characteristics of spontaneous activity can be used to infer the balance of cortical integration between incoming sensory information and endogenous activity. Critically, we contribute to the understanding of how transient brain rhythms may underwrite cortical processing, which in turn, could inform novel approaches for brain state classification, and modulation with novel brain-computer interfaces

    Spectral Topography of the Subthalamic Nucleus to Inform Next-Generation Deep Brain Stimulation.

    Get PDF
    BACKGROUND The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). OBJECTIVES The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. METHODS STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. RESULTS The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS. CONCLUSIONS The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Mean-Field Approximations With Adaptive Coupling for Networks With Spike-Timing-Dependent Plasticity

    Get PDF
    Understanding the effect of spike-timing-dependent plasticity (STDP) is key to elucidating how neural networks change over long timescales and to design interventions aimed at modulating such networks in neurological disorders. However, progress is restricted by the significant computational cost associated with simulating neural network models with STDP and by the lack of low-dimensional description that could provide analytical insights. Phase-difference-dependent plasticity (PDDP) rules approximate STDP in phase oscillator networks, which prescribe synaptic changes based on phase differences of neuron pairs rather than differences in spike timing. Here we construct mean-field approximations for phase oscillator networks with STDP to describe part of the phase space for this very high-dimensional system. We first show that single-harmonic PDDP rules can approximate a simple form of symmetric STDP, while multiharmonic rules are required to accurately approximate causal STDP. We then derive exact expressions for the evolution of the average PDDP coupling weight in terms of network synchrony. For adaptive networks of Kuramoto oscillators that form clusters, we formulate a family of low-dimensional descriptions based on the mean-field dynamics of each cluster and average coupling weights between and within clusters. Finally, we show that such a two-cluster mean-field model can be fitted to synthetic data to provide a low-dimensional approximation of a full adaptive network with symmetric STDP. Our framework represents a step toward a low-dimensional description of adaptive networks with STDP, and could for example inform the development of new therapies aimed at maximizing the long-lasting effects of brain stimulation.</p

    Optimal closed-loop deep brain stimulation using multiple independently controlled contacts

    No full text
    Deep brain stimulation (DBS) is a well-established treatment option for a variety of neurological disorders, including Parkinson’s disease and essential tremor. The symptoms of these disorders are known to be associated with pathological synchronous neural activity in the basal ganglia and thalamus. It is hypothesised that DBS acts to desynchronise this activity, leading to an overall reduction in symptoms. Electrodes with multiple independently controllable contacts are a recent development in DBS technology which have the potential to target one or more pathological regions with greater precision, reducing side effects and potentially increasing both the efficacy and efficiency of the treatment. The increased complexity of these systems, however, motivates the need to understand the effects of DBS when applied to multiple regions or neural populations within the brain. On the basis of a theoretical model, our paper addresses the question of how to best apply DBS to multiple neural populations to maximally desynchronise brain activity. Central to this are analytical expressions, which we derive, that predict how the symptom severity should change when stimulation is applied. Using these expressions, we construct a closed-loop DBS strategy describing how stimulation should be delivered to individual contacts using the phases and amplitudes of feedback signals. We simulate our method and compare it against two others found in the literature: coordinated reset and phase-locked stimulation. We also investigate the conditions for which our strategy is expected to yield the most benefit

    When do bursts matter in the primary motor cortex? Investigating changes in the intermittencies of beta rhythms associated with movement states

    No full text
    Brain activity exhibits significant temporal structure that is not well captured in the power spectrum. Recently, attention has shifted to characterising the properties of intermittencies in rhythmic neural activity (i.e. bursts), yet the mechanisms that regulate them are unknown. Here, we present evidence from electrocorticography recordings made over the motor cortex to show that the statistics of bursts, such as duration or amplitude, in the beta frequency (14–30 Hz) band, significantly aid the classification of motor states such as rest, movement preparation, execution, and imagery. These features reflect nonlinearities not detectable in the power spectrum, with states increasing in nonlinearity from movement execution to preparation to rest. Further, we show using a computational model of the cortical microcircuit, constrained to account for burst features, that modulations of laminar specific inhibitory interneurons are responsible for the temporal organisation of activity. Finally, we show that the temporal characteristics of spontaneous activity can be used to infer the balance of cortical integration between incoming sensory information and endogenous activity. Critically, we contribute to the understanding of how transient brain rhythms may underwrite cortical processing, which in turn, could inform novel approaches for brain state classification, and modulation with novel brain-computer interfaces

    Impact of Associated Gases on Equilibrium and Transport Properties of a CO2 Stream: Molecular Simulation and Experimental Studies

    No full text
    International audienceDuring the various carbon dioxide capture and storage (CCS) stages, an accurate knowledge of thermodynamic properties of CO2 streams is required for the correct sizing of plant units. The injected CO2 streams are not pure and often contain small amounts of associated gaseous components such as O2,N2, SOx ,NOx , noble gases, etc. In this work, the thermodynamic behavior and transport properties of some CO2-rich mixtures have been investigated using both experimental approaches and molecular simulation techniques such as Monte Carlo and molecular dynamics simulations.Using force fields available in the literature,we have validated the capability of molecular simulation techniques in predicting properties for pure compounds, binary mixtures, as well as multicomponent mixtures. These validations were performed on the basis of experimental data taken from the literature and the acquisition of new experimental data. As experimental data and simulation results were in good agreement, we proposed the use of simulation techniques to generate new pseudoexperimental data and to study the impact of associated gases on the properties of CO2 streams. For instance, for a mixture containing 92.0mol% of CO2, 4.0mol% of O2, 3.7mol% of Ar, and 0.3mol% of N2, we have shown that the presence of associated gases leads to a decrease of 14% and 21% of the dense phase density and viscosity, respectively, as compared to pure CO2 properties

    Polyfluorinated mercaptoalcohol as a H-bond modifier of poly(2,3,4,5,6-pentafluorostyrene) (PPFS) enhancing miscibility of hydroxylated-PPFS with various acceptor polymers

    No full text
    International audienceNovel strong hydrogen-bond donor hydroxylated-poly(2,3,4,5,6-pentafluorostyrene) (PPFSOH) copolymers were synthesized via a versatile and chemoselective thiol-para-fluoro coupling using an unprotected bis(trifluoromethyl)mercaptoalcohol as modifier. Their ability to form miscible blends or interpolymer complexes through H-bond with three different partners (poly(4-vinyl pyridine) (P4VP), poly(ethylene oxide) (PEO) and poly(butyl acrylate) (PBA)) is presented, and compared with the cases of PPFS-based copolymers modified with hydrogenated mercaptoalcohols bearing either one or two hydroxyl groups. For all three tested complementary partners, the extent of H-bond interactions and thus miscibility are enhanced with PPFSOH, as revealed by FTIR, X-ray photoelectron spectroscopy, Differential scanning calorimetry and Atomic force microscopy. This work highlights the tremendous impact of the H-bond donation of the OH interacting groups imparted by the peculiar chemical structure of the grafted mercaptoalcohol, as predicted by comparing the relevant H-bond parameters of model molecules. (C) 2013 Elsevier Ltd. All rights reserved

    Average beta burst duration profiles provide a signature of dynamical changes between the ON and OFF medication states in Parkinson's disease.

    No full text
    Parkinson's disease motor symptoms are associated with an increase in subthalamic nucleus beta band oscillatory power. However, these oscillations are phasic, and there is a growing body of evidence suggesting that beta burst duration may be of critical importance to motor symptoms. This makes insights into the dynamics of beta bursting generation valuable, in particular to refine closed-loop deep brain stimulation in Parkinson's disease. In this study, we ask the question "Can average burst duration reveal how dynamics change between the ON and OFF medication states?". Our analysis of local field potentials from the subthalamic nucleus demonstrates using linear surrogates that the system generating beta oscillations is more likely to act in a non-linear regime OFF medication and that the change in a non-linearity measure is correlated with motor impairment. In addition, we pinpoint the simplest dynamical changes that could be responsible for changes in the temporal patterning of beta oscillations between medication states by fitting to data biologically inspired models, and simpler beta envelope models. Finally, we show that the non-linearity can be directly extracted from average burst duration profiles under the assumption of constant noise in envelope models. This reveals that average burst duration profiles provide a window into burst dynamics, which may underlie the success of burst duration as a biomarker. In summary, we demonstrate a relationship between average burst duration profiles, dynamics of the system generating beta oscillations, and motor impairment, which puts us in a better position to understand the pathology and improve therapies such as deep brain stimulation

    Sub-harmonic entrainment of cortical gamma oscillations to deep brain stimulation in Parkinson's disease: Model based predictions and validation in three human subjects

    No full text
    Objectives: The exact mechanisms of deep brain stimulation (DBS) are still an active area of investigation, in spite of its clinical successes. This is due in part to the lack of understanding of the effects of stimulation on neuronal rhythms. Entrainment of brain oscillations has been hypothesised as a potential mechanism of neuromodulation. A better understanding of entrainment might further inform existing methods of continuous DBS, and help refine algorithms for adaptive methods. The purpose of this study is to develop and test a theoretical framework to predict entrainment of cortical rhythms to DBS across a wide range of stimulation parameters. Materials and Methods: We fit a model of interacting neural populations to selected features characterising PD patients' off-stimulation finely-tuned gamma rhythm recorded through electrocorticography. Using the fitted models, we predict basal ganglia DBS parameters that would result in 1:2 entrainment, a special case of sub-harmonic entrainment observed in patients and predicted by theory. Results: We show that the neural circuit models fitted to patient data exhibit 1:2 entrainment when stimulation is provided across a range of stimulation parameters. Furthermore, we verify key features of the region of 1:2 entrainment in the stimulation frequency/amplitude space with follow-up recordings from the same patients, such as the loss of 1:2 entrainment above certain stimulation amplitudes. Conclusion: Our results reveal that continuous, constant frequency DBS in patients may lead to nonlinear patterns of neuronal entrainment across stimulation parameters, and that these responses can be predicted by modelling. Should entrainment prove to be an important mechanism of therapeutic stimulation, our modelling framework may reduce the parameter space that clinicians must consider when programming devices for optimal benefit
    corecore