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Abstract 1

Understanding the effect of spike-timing-dependent plasticity (STDP) is key to 2

elucidate how neural networks change over long timescales and to design inter- 3

ventions aimed at modulating such networks in neurological disorders. However, 4

progress is restricted by the significant computational cost associated with simulat- 5

ing neural network models with STDP, and by the lack of low-dimensional descrip- 6

tion that could provide analytical insights. Phase-difference-dependent plasticity 7

(PDDP) rules approximate STDP in phase oscillator networks, which prescribe 8

synaptic changes based on phase differences of neuron pairs rather than differences 9

in spike timing. Here we construct mean-field approximations for phase oscilla- 10

tor networks with STDP to describe part of the phase space for this very high 11

dimensional system. We first show that single-harmonic PDDP rules can approx- 12

imate a simple form of symmetric STDP, while multi-harmonic rules are required 13

to accurately approximate causal STDP. We then derive exact expressions for the 14

evolution of the average PDDP coupling weight in terms of network synchrony. For 15

adaptive networks of Kuramoto oscillators that form clusters, we formulate a family 16

of low-dimensional descriptions based on the mean field dynamics of each cluster 17

and average coupling weights between and within clusters. Finally, we show that 18

such a two-cluster mean-field model can be fitted to synthetic data to provide a 19

low-dimensional approximation of a full adaptive network with symmetric STDP. 20

Our framework represents a step towards a low-dimensional description of adap- 21

tive networks with STDP, and could for example inform the development of new 22

therapies aimed at maximizing the long-lasting effects of brain stimulation. 23
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1 Introduction 24

Synaptic plasticity is considered the primary mechanism for learning and memory con- 25

solidation. Neurons with similar activity patterns strengthen their synaptic connections, 26

while others connections may weaken. Spike-timing-dependent plasticity (STDP) has 27

been suggested as an unsupervised, local learning rule in neural networks (Gerstner, 28

Kempter, Van Hemmen, & Wagner, 1996; Song, Miller, & Abbott, 2000) motivated 29

by experimental findings (Markram, Lübke, Frotscher, & Sakmann, 1997; Bi & Poo, 30

1998; Feldman, 2000; Froemke & Dan, 2002; Cassenaer & Laurent, 2007; Sgritta, Lo- 31

catelli, Soda, Prestori, & D’Angelo, 2017). These experimental studies reported synaptic 32

strengthening or weakening depending on the order and timing of pre- and postsynaptic 33

spikes. In causal STDP (Fig. 1A), long-term potentiation (LTP) occurs when the postsy- 34

naptic neuron fires shortly after the presynaptic neuron. Conversely, long-term depression 35

(LTD) occurs when the postsynaptic neuron fires shortly before the presynaptic neuron. 36

The closer the spike times are, the larger the effect. Non-causal, symmetric STDP has 37

also been reported in the hippocampus (Abbott & Nelson, 2000; Mishra, Kim, Guzman, 38

& Jonas, 2016), see Fig. 1B. Although Donald Hebb emphasized the importance of causal- 39

ity in his theory of adaptive synaptic connections in 1949 (Hebb, 2005), such non-causal 40

rules, that neglect temporal precedence, are sometimes referred to as Hebbian plasticity 41

rules. 1
42

As a major contributor to long-term plasticity (time scale of 1s or longer), STDP is 43

key to long-term neural processes in the healthy brain, such as memory (Litwin-Kumar 44

& Doiron, 2014) and sensory encoding (Coulon, Beslon, & Soula, 2011), but also to 45

modulate networks affected by neurological disorders (Madadi Asl, Vahabie, Valizadeh, 46

& Tass, 2022). In particular, long-term plasticity is critical to the design of effective 47

therapies for neurological disorders based on invasive and non-invasive brain stimula- 48

tion. Paired associative stimulation using transcranial magnetic stimulation (TMS) has 49

been shown to trigger STDP-like changes (Müller-Dahlhaus, Ziemann, & Classen, 2010; 50

Johnen et al., 2015; Wiratman et al., 2022), and STDP models have been used to de- 51

sign electrical stimulation for stroke rehabilitation (Kim et al., 2021). Coordinated reset 52

deep brain stimulation (DBS) for Parkinson’s disease was designed to induce long-term 53

plastic changes outlasting stimulation using STDP models (Tass & Majtanik, 2006), and 54

was later validated in non-human primates (Tass et al., 2012; Wang et al., 2016) and 55

1In this work, we call plasticity rules causal when temporal precedence is enforced (as in ‘classical’
STDP rules (Bi & Poo, 1998)), and symmetric when inverting spike timings/phase differences leads to the
same type of adaptation. We stay clear of the ambiguous term Hebbian STDP, which is also sometimes
used to refer to causal STDP in the experimental literature (Cassenaer & Laurent, 2007; Sgritta et al.,
2017).
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Figure 1: Examples of STDP observed in pairing experiments. In typical STDP
pairing experiments, the presynaptic neuron is stimulated shortly before or after forcing the
postsynaptic neuron to fire by injecting a brief current pulse (with a controlled delay). The
pairing is repeated many times for each value of the delay. A: causal STDP in synapses on
glutamatergic neurons in rat hippocampal culture. Adapted from (Bi & Poo, 1998) with no
permission required (Copyright 1998 Society for Neuroscience). B: symmetric STDP in CA3-
CA3 synapses in the hippocampus (slices in the rat). Adapted from (Mishra et al., 2016) with
no permission required. In both panels, the horizontal axes represent the difference in spike
timing (postsynaptic minus presynaptic), and the vertical axes represent measures of the change
in synaptic strength, either involving excitatory postsynaptic currents (EPSC, panel A), or
excitatory postsynaptic potentials (EPSP, panel B).

patients (Adamchic et al., 2014). 56

However, progress in these areas is restricted by the significant computational cost 57

associated with simulating neural network models with STDP and by the lack of low- 58

dimensional description of such networks. Indeed, simulating networks with STDP of 59

even moderate size for more than a couple of minutes of biological time can be im- 60

practical because the number of weight updates scales with the square of the network 61

size. Low-dimensional mean-field approximations have been developed for networks with 62

short-term plasticity (Tsodyks, Pawelzik, & Markram, 1998; Taher, Torcini, & Olmi, 63

2020; Gast, Schmidt, & Knösche, 2020; Schmutz, Gerstner, & Schwalger, 2020; Gast, 64

Knösche, & Schmidt, 2021), but reductions for STDP have assumed that plasticity does 65

not change firing rates and spike covariances (Ocker, Litwin-Kumar, & Doiron, 2015) 66

or that the network is in a balanced state at every point in time (Akil, Rosenbaum, & 67

Josić, 2021). Even if node dynamics are given by a simple Kuramoto-type model, it is 68

a challenge to understand the dynamics of large networks with adaptivity. While the 69

continuum limit of Kuramoto-type networks with STDP-like adaptivity can be described 70

by integro-differential equations from a theoretical perspective (Gkogkas, Kuehn, & Xu, 71

2021), these do not necessarily elucidate the resulting network dynamics or yield a compu- 72

tational advantage. Approaches like the Ott–Antonsen reduction (Ott & Antonsen, 2008), 73

which have been instrumental to derive low-dimensional descriptions of phase oscillators 74
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(see (Bick, Goodfellow, Laing, & Martens, 2020) and references therein) are not directly 75

applicable to adaptive networks where all connection weights evolve independently of one 76

another. Indeed, one would not expect an exact mean-field description with only a few 77

degrees of freedom to be possible (as for the Kuramoto model with static connectivity) 78

without making further assumptions, as any exact low-dimensional description would have 79

to reflect the high, adaptivity-induced multistability (Berner, Schöll, & Yanchuk, 2019). 80

Models of causal, additive STDP based on differences in spike timing are exemplified 81

by the work of Song, Miller and Abbott (Song et al., 2000). They assumed that the 82

synaptic strength κkl from presynaptic neuron l to postsynaptic neuron k is updated only 83

when either neurons spike, and the corresponding change in synaptic strength from l to k 84

is given by 85

∆κkl =


A+e−∆tkl/τ+ for ∆tkl = tk − tl > 0,

−A−e−|∆tkl|/τ− for ∆tkl < 0,

0 for ∆tkl = 0,

(1)

where the most recent spike times of neurons k and l are tk and tl, the parameters A+ 86

and A− determine the magnitude of LTP and LTD, and τ+ and τ− determine the timescale 87

of LTP and LTD, respectively (see Fig. 4A). Conversely, symmetric STDP with both LTP 88

and LTD can be modeled by asserting that synaptic strengths are updated when either 89

neuron spikes, with a change in synaptic strength from l to k given by the Mexican hat 90

function (Ricker wavelet) 91

∆κkl = 2a√
3bπ1/4

1 −
(

∆tkl
b

)2
 e−∆t2kl/(2b2), (2)

where a scales the magnitude of STDP, and b scales the temporal width of the Mexican 92

hat (see Fig. 2A). 93

To approximate STDP in phase oscillator networks, simpler phase-dependent plasticity 94

(PDDP) rules have been developed, which prescribe synaptic changes based on differences 95

in phase of neuron pairs rather than differences in spike timing. If the state of oscillator k 96

is given by a phase variable θk ∈ [0, 2π) on the circle, the change of coupling weight 97

between oscillators k and l according to PDDP depends on their phase difference θl − θk. 98

While symmetric STDP can be approximated by the symmetric PDDP rule originally 99

proposed by Seliger et al. (Seliger, Young, & Tsimring, 2002), several authors added 100

a phase-shift parameter φ in order to approximate causal STDP-like learning (Aoki & 101

Aoyagi, 2009; Berner et al., 2019), as well as other types of plasticity. With this single- 102
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harmonic PDDP rule, the weight κkl from oscillator l to oscillator k evolves according 103

to 104
dκkl
dt = ϵ [λ cos(θl − θk + φ) − κkl] , (3)

where λ controls the strength of PDDP relative to the decay of the synaptic strength and ϵ 105

sets the relative time scale between the plasticity mechanism and the phase dynamics. 106

When φ = 0, we recover the learning rule introduced by Seliger et al., which is symmetric 107

around a phase difference of zero. For φ = π/2, the cosine term is anti-symmetric around 108

zero, which provides a first level of approximation of additive, causal STDP (in the absence 109

of the decay term). However, this is a coarse approximation. A PDDP rule directly based 110

on causal STDP exponential kernels (Maistrenko, Lysyansky, Hauptmann, Burylko, & 111

Tass, 2007) could be more closely related to causal STDP. Lücken et al. proposed such 112

a rule, and determined the correspondence between the parameters of the causal STDP 113

rule, the parameters of the PDDP rule, and the parameters of the underlying network of 114

coupled oscillators (Lücken, Popovych, Tass, & Yanchuk, 2016) (see Fig. 4B). Importantly, 115

the synaptic strengths are continuously updated based on the evolving phase differences, 116

while standard models of neural plasticity assume updates as discrete events when a 117

neuron spikes. 118

Here, we construct mean-field approximations for coupled Kuramoto phase oscillators 119

subject to PDDP and compare these approximations to fully adaptive networks where 120

every edge evolves according to STDP. Specifically, we consider two types of PDDP rules: 121

rules which update connection weights continuously as was done in previous studies, 122

and event based rules, where weights are updated according to phase differences at a 123

particular phase corresponding to spiking. In Section 2 we show that single-harmonic 124

PDDP rules can indeed approximate symmetric STDP in adaptively coupled networks of 125

Kuramoto oscillators, while a multi-harmonic rule is required to accurately approximate 126

causal STDP. For PDDP rules, we derive exact equations describing the evolution of the 127

mean coupling strength in terms of the Kuramoto/Daido order parameters that encode 128

synchrony of the oscillators’ phases; see Section 3. We then focus on networks with 129

symmetric adaptive coupling that naturally form clusters (cf. Section 2 or (Berner et al., 130

2019)). For such networks we construct mean-field approximations (Section 4) for the 131

emergent coupling topologies, where each cluster corresponds to a coupled population. If 132

we assume that coupling between clusters is through the mean coupling strength—rather 133

than by individual weights between oscillators—we obtain low-dimensional Ott–Antonsen 134

equations for the mean-field limit. We explicitly analyze the dynamics of the reduced 135

equations for adaptive networks for one and two clusters. Note that these mean-field 136

descriptions are not valid globally (i.e., there is no single reduced equation that is valid 137
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on all of state space) but rather aim to capture the dynamics on part of overall phase space 138

determined by the initial conditions. In other words, we have a family of low-dimensional 139

dynamics that can describe part of the phase space for this very high-dimensional system. 140

Finally, we show that the dynamics of the full network can be approximated by such a 141

family of low dimensional dynamics by extracting the mean field description from the 142

emergent clustering (Section 5). Since brain activity is transient, we focus on transients 143

and consider additive plasticity without bounds on individual weights for causal STDP. 144

In line with previous studies, we however include a weight decay term when considering 145

symmetric STDP (Seliger et al., 2002; Berner et al., 2019). 146

2 PDDP can approximate STDP in Kuramoto net- 147

works 148

Adaptation of network connections through STDP rely—as the name suggests—on the 149

timing of action potentials of the coupled neurons. If the state of each neuron can be de- 150

scribed by a single phase variable (for example, if the coupling is weak (Ashwin, Coombes, 151

& Nicks, 2016)) then it may be possible to approximate STDP by an adaptation rule that 152

depends on the phase differences between oscillators such as equation (3). In this section 153

we now consider general PDDP rules, that can update weights continuously (as in equa- 154

tion (3)) or update at discrete time points (spiking events). We show that, for a network 155

of phase oscillators, these PDDP rules can approximate both symmetric and causal STDP. 156

For causal STPD, the accuracy increases substantially as the number of harmonics in the 157

PDDP rule is increased. 158

To illustrate this, we focus on the Kuramoto model (Kuramoto, 1975), which is widely 159

used to understand synchronization phenomena in neuroscience and beyond, subject to 160

plasticity. Specifically, we consider N coupled Kuramoto oscillators where oscillators rep- 161

resent coupled neurons (Weerasinghe et al., 2019; Nguyen, Hayashi, Baptista, & Kondo, 162

2020; Weerasinghe, Duchet, Bick, & Bogacz, 2021). The phase θk of oscillator k evolves 163

according to 164

dθk
dt = ωk + 1

N

N∑
l=1

κkl sin(θl − θk) (4)

with intrinsic frequency ωk and strength κkl of the synaptic connections from oscilla- 165

tor l to oscillator k (subject to plasticity). The (complex-valued) Kuramoto–Daido order 166
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parameters 167

Z(m) = 1
N

N∑
k=1

eimθk

for m ∈ Z capture the (cluster) synchrony of the oscillator phases. The magnitude of the 168

first order parameter Z := Z(1)—simply called the Kuramoto order parameter—captures 169

global synchrony, that is, for Z = ρeiΨ we have |Z| = ρ = 1 if all oscillators have the same 170

phase θ1 = · · · = θN . Similarly, |Z(2)| = 1 if the oscillators form two antiphase clusters 171

where θj = θk or θj = θk + π, etc. 172

2.1 Principles to convert STDP to PDDP 173

PDDP rules prescribe synaptic changes based on differences in phase of neuron pairs rather 174

than differences in spike timing, and can be used to approximate both symmetric and 175

causal STDP in phase oscillator networks. In particular, the approximation is expected 176

to hold under the assumption that the evolution of phase differences is slower than the 177

phase dynamics (Lücken et al., 2016). Under this assumption, spike time differences are 178

approximated by dividing phase differences by the mean angular frequency of the network 179

Ω = 1
N

∑N
k=1 ωk. 180

As the phase difference is continuous in time, the discrete weight updates, based 181

on spike-time differences in the case of STDP, can be converted to a continuous-time 182

differential equation in terms of the phase differences. As a result, the coupling weight 183

between each pair of neurons updates continuously based on the phase difference between 184

the pre- and postsynaptic oscillators; we refer to this as continuously updating PDDP 185

or simply PDDP when there is no ambiguity. STDP updates occur every time a neuron 186

spikes, while PDDP updates occur continuously at every point in time. To ensure that 187

STDP and continuously updating PDDP scale similarly, we scale the discrete STDP 188

updates by the average number of spikes per unit time Ω/2π. 189

Rather than updating weights continuously, we can restrict weight updates to occur 190

only at spiking events. We say that oscillator k spikes if its phase increases through 191

θk = 0, and let tqk be the qth firing time of neuron k. At each spiking event, we update 192

the coupling weight between each pair of neurons based on their phase difference; we 193

give explicit examples of the functional form of the updates below. We refer to this 194

type of PDDP rule as event-based PDDP (ebPDDP). While there is an explicit phase 195

dependence through the events, the actual change only depends on the phase difference. 196

To ensure appropriate scaling, we again multiply by the average number of spikes per unit 197

time and introduce an additional factor which is only non-zero when either the pre- or 198

postsynaptic neuron spikes. This factor is defined as C =
[∑

q δ(t− tqk) +∑
q δ(t− tql )

]
/2, 199
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where δ denotes the Dirac delta function2. 200

2.2 Symmetric STDP and single-harmonic PDDP 201

In this section, we show that symmetric, non-causal STDP modelled by equation (2) 202

together with the weight decay dκkl

dt = −ϵκkl can be approximated by the single-harmonic 203

PDDP learning rule introduced by Seliger et al. (equation (3) with φ = 0). We refer to 204

this rule in what follows as the Seliger rule. As detailed in the previous section, discrete 205

STDP updates should be scaled by Ω/2π to obtain continuous PDDP updates. Therefore, 206

by matching the scaled maximum of equation (2) with the maximum of equation (3), we 207

have [Ω/(2π)]
[
2a/(

√
3bπ1/4)

]
= ϵλ, which determines the value of λ for a given ϵ (see 208

example in Fig. 2). Moreover, to ensure that the scale of spike timing differences in the 209

STDP rule and the scale of phases differences in the PDDP rule match without modifying 210

the Seliger rule, we choose b ≈ π/(2Ω) (see Fig. 2). Arbitrary values of b could be 211

accommodated by scaling the phase difference term in the Seliger rule as detailed in the 212

previous section. The corresponding event-based PDDP rule reads 213

dκkl
dt = ϵ

[
λeb

∑
q δ(t− tqk) +∑

q δ(t− tql )
2 cos(θl − θk) − κkl

]
, (5)

with λeb = λ2π
Ω . Note that updates to the coupling strengths happen whenever the pre- 214

or postsynaptic neurons spikes. 215

As shown in Fig. 3, both single-harmonic PDDP rules (the Seliger rule and equa- 216

tion (5)) can approximate symmetric STDP (equation (2)) in networks of Kuramoto os- 217

cillators. Simulation details can be found in Section A.1. The time evolution of the weight 218

distribution (panel A), the coupling matrix at the last simulation time point (panel B), as 219

well as the the time evolution of the average coupling (panel C1) and network synchrony 220

(panels C2-C3) are comparable across learning rules. In particular, the Pearson’s corre- 221

lation between the STDP coupling matrix and the PDDP coupling matrix is 0.88, while 222

the correlation between the STDP coupling matrix and the ebPDDP coupling matrix is 223

0.90. For the parameter set shown in Fig. 3, we see the emergence of two synchronised 224

clusters. For this type of dynamics, the average coupling as a function of time may be 225

better captured by ebPDDP than PDDP (panel C1). However, for the desynchronized 226

state (shown in the Supplemental Material C Fig. C.1), there is little difference between 227

continuous PDDP and ebPDDP. In both states, the accuracy of the approximation could 228

be improved by considering a Fourier expansion of the Mexican hat function rather than 229

2The division by 2 ensures that this rule scales similarly to the STDP rule and the PDDP rule with
continuous updates.
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Figure 2: From symmetric STDP to single-harmonic PDDP. A: symmetric STDP
function (Mexican hat, equation (2)) describing the change in weight ∆κkl as a function of the
difference between spikes times ∆tkl. B: Considering the phase difference ϕkl mod 2π instead
of the difference between spike times, the STDP function in A can be approximated by the
PDDP function in B (equation (3) with φ = 0). The horizontal axis is ϕkl

Ω , and the vertical axis
is 2π

Ω
dκkl
dt to enable comparison with panel A. The solid blue line correspond to one oscillatory

period at frequency Ω centered on ϕkl = 0, the dashed blue line extends beyond one period. The
parameters used in panel A are a = 0.025822, b = 0.049415, corresponding to λ = 1, ϵ = 0.5,
Ω = 10π in panel B. LTP is highlighted in blue, and LTD in red.

a single cosine term. We explore this for causal, non symmetric STDP in the next section, 230

as we found that a single sine term is, in general, a poor approximation of the causal 231

STDP kernel. 232

2.3 Causal STDP and multi-harmonic PDDP 233

In the previous section, we considered PDDP rules with a single harmonic in the phase 234

difference. To get a better approximation of causal STDP, one can take more harmonics 235

into account. 236

2.3.1 Obtaining multi-harmonic PDDP rules from causal STDP 237

To approximate causal STDP, we consider the PDDP rule proposed by Lücken et al. 238

(Lücken et al., 2016) as 239

dκkl
dt = Ω

2π

(
A+e

−ϕkl
Ωτ+ − A−e

ϕkl−2π

Ωτ−

)
= F (ϕkl), (6)

where ϕkl = (θl−θk) mod 2π, Ω is the mean (angular) frequency of the network, and other 240

parameters have been defined in equation (1). In equation (6), both synaptic potentiation 241

(first term) and synaptic depression (second term) are described without requiring a 242

9



Figure 3: Comparison between symmetric STDP and PDDP in a Kuramoto network
(two synchronised cluster state). A: Evolution of the distribution of coupling weights with
time (100 bins at each time point). The average weight is represented by a thin black line.
STDP is shown in A1, PDDP in A2, and ebPDDP in A3. B: Coupling matrix at t = 150s, with
oscillators sorted by natural frequency. STDP is shown in B1, PDDP in B2, and ebPDDP in
B3. C: Time evolution of average coupling (C1, error bars represent the standard error of the
mean over 5 repeats, the high variability is due to sensitivity to initial conditions) and network
synchrony (C2-C3). STDP is shown in black, PDDP in blue, and ebPDDP in red. [a = 0.38733,
b = 0.049415, σκ = 3, ∆ = 1.2π, Ω = 10π (5Hz)]

piecewise definition thanks to the fast decaying exponentials. The correspondence of this 243

PDDP rule with additive STDP is illustrated in Fig. 4B. If the postsynaptic neuron k 244

spikes (i.e., its phase increases through 0) shortly after the presynaptic neuron l, ϕkl is 245

small and positive, which will lead to a potentiation of κkl. Conversely, if the postsynaptic 246
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neuron spikes shortly before the presynaptic neuron, ϕkl−2π is small and negative, which 247

will lead to a depression of κkl. As laid out in Section 2.1, spike time differences are 248

approximated in equation (6) by dividing phase differences by the network mean angular 249

frequency. Moreover, the scaling factor Ω/2π (average number of spikes per unit time) 250

accounts for the conversion of discrete weight updates to a continuous-time differential 251

equation. The corresponding event-based PDDP rule can be obtained as 252

dκkl
dt =

∑
q δ(t− tqk) +∑

q δ(t− tql )
2

(
A+e

−ϕkl
Ωτ+ − A−e

ϕkl−2π

Ωτ−

)
,

= π

Ω

(∑
q

δ(t− tqk) +
∑
q

δ(t− tql )
)
F (ϕkl), (7)

where F is given by equation (6). 253

Figure 4: From causal STDP to multi-harmonic PDDP. A: STDP function (equa-
tion (1)) describing the change in weight ∆κkl as a function of the difference between spikes
times ∆tkl. B: Considering the phase difference ϕkl mod 2π instead of the difference between
spike times, the STDP function in A can be approximated by the PDDP function in B2 (equa-
tion (6)). As shown in B1, wrapping the PDDP function around a cylinder to join ϕkl = 0 and
ϕkl = 2π illustrates the correspondence with the STDP function. In B3, the PDDP function is
approximated using truncated Fourier series with 1, 5, and 25 Fourier components. The ver-
tical axis is 2π

Ω
dκkl
dt to enable comparison with panel A. The parameters used in all panels are

τ+ = 16.8ms and τ− = 33.7ms, A+ = A− = 0.2. LTP is highlighted in blue, and LTD in red.

In both cases, we can expand F (ϕkl) as a Fourier series of the phase difference since ϕkl 254
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is defined modulo 2π, which makes F (ϕkl) a 2π-periodic function. The Fourier expansion 255

will be key to derive the evolution of the average coupling strength in Section 3, and can 256

be truncated to only include Nf components for simulations (see examples in Fig. 4C). 257

We note that the PDDP rule by Berner et al. with φ ≈ π/2 is a single-harmonic version 258

of the rule by Lücken et al. (with a vertical shift), and call truncated Fourier expansions 259

of equation (6) and equation (7) with Nf > 1 “multi-harmonic PDDP”. We express the 260

Fourier series of F as 261

F (ϕkl) =
∞∑

m=−∞
cme

mi(θl−θk) = a0

2 +
∞∑
m=1

[am cos{m(θl − θk)} + bm sin{m(θl − θk)}] , (8)

where (cm)m∈Z are the complex-valued Fourier coefficients, or equivalently (am)m∈N and 262

(bm)m∈N∗ are the real-valued Fourier coefficients. The Fourier coefficients only depend on 263

the parameters of the STDP rule (equation (1)) and Ω, and the real-valued coefficients 264

can be obtained analytically as 265

am = 1
π

∫ 2π

0
F (x) cos(mx)dx = Ω

2π2

[
A+τ+

1 +m2τ 2
+

(
1 − e

− 2π
τ+

)
+ A−τ−

1 +m2τ 2
−

(
e

− 2π
τ− − 1

)]
,

(9) 266

bm = 1
π

∫ 2π

0
F (x) sin(mx)dx = Ω

2π2

[
mA+τ

2
+

1 +m2τ 2
+

(
1 − e

− 2π
τ+

)
+ mA−τ

2
−

1 +m2τ 2
−

(
1 − e

− 2π
τ−

)]
.

2.3.2 Comparison of learning rules 267

Multi-harmonic PDDP can approximate causal STDP in Kuramoto networks (simulation 268

details can be found in the Supplemental Material A.2). As the number of harmonics in- 269

cluded in the PDDP rules is increased, the dynamics for the networks with PDDP begin to 270

match those of the STDP network (Fig. 5). The time evolution of the weight distribution 271

(panel A), the coupling matrix at the last simulation time point (panel B), as well as the 272

the time evolution of the average coupling (panel C1) and network synchrony (panels C2- 273

C7) are closely matched for causal STDP and multi-harmonic PDDP or ebPDDP when 274

enough Fourier components are included (Nf = 25). Simulations were also performed for 275

a range of parameter values and the findings were similar (see Figs. C.2–C.5 in Supple- 276

mental Material C). Single-harmonic PDDP or ebPDDP (Nf = 1) can provide a first level 277

of approximation of causal STDP in certain cases when the time evolution of the weight 278

distribution is simple (see Supplemental Material C Fig. C.4). However, single-harmonic 279

rules are unable to describe more complex cases, even qualitatively (as seen in Fig. 5). 280

In all cases studied for a network frequency of 5Hz, 25 Fourier components are deemed 281

sufficient to approximate the dynamics of the network with causal STDP. While the per- 282
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formance of ebPDDP is similar to PDDP, ebPDDP is slightly more accurate than PDDP. 283

To quantitatively compare STDP to PDDP and ebPDDP, we construct error metrics for 284

the time evolution of the weight distribution ehist(κkl), the average coupling eκ̂, and the 285

network synchrony eρ, and consider the Pearson’s correlation between coupling matrices 286

at the last simulation time point rκ∞
kl

. These metrics are defined in the Supplemental 287

Material A.2. In general, these metrics improve with increasing Nf (Fig. 6A), although 288

stagnation or a slight worsening can be seen when the error is already low. Although 289

it is of no consequence in Kuramoto networks with sine coupling, self-coupling weights 290

are consistently different between causal STDP and multi-harmonic PDDP or ebPDDP 291

in our simulations. This is due to the truncated Fourier expansions of F not being zero 292

when the phase difference is zero (see Fig. 4C). 293

2.3.3 Parameter dependence 294

Model parameters influence the four metrics described in the previous section (Fig. 6B), 295

although the impact on rκ∞
kl

is minor (always stays > 0.96). Increasing the standard 296

deviation of the frequency distribution (∆) tends to improve the error metrics, except rκ∞
kl

297

which gets slightly lower. This is expected since a larger ∆ reduces synchrony and makes 298

the weight distribution more unimodal. The impact of the standard deviation of the initial 299

coupling distribution (σκ) on the metrics is smaller, except for the time evolution of the 300

weight distribution. The effect of the ratio of the scales of LTD to LTP (β = A−/A+) 301

depends on the metric considered. The largest effect is a lowering of eρ when LTD 302

dominates (β = 1) compared to the balanced situation (β = 0.5). This is due to the fact 303

that the time evolution of ρ is closely approximated with Nf = 1 when LTD dominates, 304

whereas in the balanced state more Fourier components are required to obtain a good 305

approximation. Since dominant LTD leads to lower synchrony, this matches the previous 306

observation that lower synchrony is associated with lower error metrics. Time courses of ρ 307

for both states can be found in Supplemental Material C; Fig. C.2 shows the balanced 308

state and Fig. C.4 shows the LTD dominant regime. 309

To test the robustness of our findings, we studied a network with a mean frequency four 310

times higher (20Hz) and considered the least favorable part of parameter space (lowest ∆, 311

lowest σκ, and β = 0.5) (see Supplemental Material C Fig. C.5). The order of magnitude 312

of the error metrics is the same as for 5Hz, except for rκ∞
kl

(Supplemental Material C 313

Fig. C.8C). The lower value for rκ∞
kl

may be explained by the greater complexity and 314

finer structures in the coupling matrix. However, the coupling matrix obtained at the 315

last stimulation point with multi-harmonic ebPDDP for Nf = 75 (see Supplemental 316

Material C Fig. C.5B7) is qualitatively very similar to the coupling matrix obtained 317
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with STDP (panel B1). At 20Hz, the period of the oscillators is comparable to the 318

STDP time constants, hence the weight distribution patterns unfolding in time are more 319

highly multimodal than at 5Hz. These patterns are still well approximated by multi- 320

harmonic PDDP and ebPDDP, but a larger number of Fourier components than at 5Hz 321

is warranted for accurate results. Simulating this higher frequency network required a 322

smaller simulation time step (∆t = 0.1ms). However, the time step has overall little 323

impact on the error metrics at lower frequencies (Fig. C.8B). 324

Additional explorations of the parameter dependencies can be found in the Supple- 325

mental Material C Fig. C.8 and Fig. C.9. 326
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Figure 5: Comparison between STDP and PDDP in a Kuramoto network, [β = 0.5,
σκ = 0.2, ∆ = 0.6π, Ω = 10π (5Hz)]. Results for PDDP and ebPDDP are shown for 1, 5,
and 25 Fourier components Nf (first, second, and third column on the right hand side of the
figure, respectively). A: Evolution of the distribution of coupling weights with time (100 bins
at each time point). The average weight is represented by a thin black line. STDP is shown in
A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at t = 150s, with oscillators
sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4, and ebPDDP in B5-B7.
C: Time evolution of average coupling (C1, error bars represent the standard error of the mean
over 5 repeats) and network synchrony (C2-C7). STDP is shown in black, PDDP in blue, and
ebPDDP in red. In all panels, the approximation becomes better as Nf is increased.
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Figure 6: Influence of Nf , σκ, ∆, and β on error metrics. Error metrics for PDDP
compared to STDP for the time evolution of network synchrony eρ, average coupling eκ̂ and
distribution of weights ehist(κkl), and for the coupling matrix at the last stimulation point rκ∞

kl

are shown in the first, second, third, and fourth columns, respectively. Results for PDDP are in
blue, and for ebPDDP in red. A: Influence of the number of Fourier coefficients Nf on the error
metrics for the parameters used in Fig. 5 (β = 0.5, σκ = 0.2, ∆ = 0.6π, Ω = 10π), error bars show
the standard error of the mean (sem) over 5 repeats. B: Influence of the network parameters on
the error metrics for Nf = 40. The standard deviation of the oscillator frequency distribution
∆ is shown in the first row, the standard deviation of the initial weight distribution σκ is given
in the second row, and the ratio the LTP to LTD scaling factors β is depicted in the third row.
All of the combination of parameters ∆ = {0.6π, 1.2π, 1.8π}, σκ = {0.2, 1.5, 3}, β = {0.5, 1}
are included with 5 repeats for each combination. In each row, averaging is performed over the
parameters that do not correspond to the horizontal axis (standard deviation error bars). Note
that the scale of the vertical axes is two to ten times smaller than in panel A for readability
(range indicated by grey bars). See Supplemental Material C Fig. C.9 for detailed slices in
parameter space.
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3 Evolution of the average coupling strength in net- 327

works with PDDP 328

While each coupling weight κkl evolves independently of one another, we now derive 329

evolution equations for the average coupling weight 330

κ̂ = 1
N2

N∑
k=1

N∑
l=1

κkl (10)

for both continuously updating and event-based PDDP. Obtaining the mean coupling 331

weight dynamics is necessary for constructing our mean-field approximations, which are 332

based on the average coupling weights within and between populations. 333

3.1 Average coupling for general PDDP 334

Suppose that each weight κkl evolves according to a general, continuously updating PDDP 335

rule dκkl

dt = F (ϕkl), where F is a 2π-periodic function of the phase difference ϕkl. The 336

PDDP rule in Section 2.3 with F approximating causal STDP (equation 6) is a particular 337

example. Writing F (ϕkl) = ∑∞
m=−∞ cme

mi(θl−θk) as in (8) and differentiating (10) yields 338

dκ̂
dt =

∞∑
m=−∞

cm
N2

N∑
k=1

N∑
l=1

emiθle−miθk . (11)

This expression can be written in terms of the Kuramoto–Daido order parameters Z(m). 339

We have Z(−m) = Z̄(m) and consequently Eq. (11) reads 340

dκ̂
dt =

∞∑
m=−∞

cmZ
(m)Z̄(m) =

∞∑
m=−∞

cm
∣∣∣Z(m)

∣∣∣2 .
The series converges as |Z(m)| ≤ 1 and the Fourier series of F is assumed to converge. 341

Since cm + c−m = am and 2c0 = a0, the evolution equation for κ̂ can be simplified to 342

dκ̂
dt = a0

2 +
∞∑
m=1

am|Z(m)|2. (12)

In the case of F approximating causal STDP, the coefficients (am)m∈N are given by equa- 343

tion (9). In the absence of bounds on the coupling weights, equation (12) exactly describes 344

the average coupling strength in a phase oscillator networks with PDDP as illustrated in 345

Fig. 7. 346

If the PDDP rule contains a decay term, the evolution of the mean coupling strength 347
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Figure 7: Simulation of average coupling rules in Kuramoto networks. Equation (12)
(blue circles) describes exactly the average coupling weight in Kuramoto networks with PDDP
(blue lines). The correspondence between equation (15) (red circles) and the average coupling
weight in Kuramoto networks with ebPDDP (equation 7, red lines) is not exact as explained in
the main text. The same number of Fourier components are used in all cases (Nf = 40). The
four sets of parameters used for the simulations are indicated by the bold axes and correspond
to those used in Fig. 5 as well as Fig. C.2, C.3, and C.4 from the Supplemental Material C.

will reflect this as well. More concretely, consider an evolution of individual coupling 348

weights dκkl

dt = ϵ [λF (ϕkl) − κkl] as in the PDDP rule by Seliger et al. (Seliger et al., 2002) 349

where λ and ϵ are parameters. Then the evolution of the average coupling is 350

dκ̂
dt = ϵ

[
λ

(
a0

2 +
∞∑
m=1

am|Z(m)|2
)

− κ̂

]
. (13)

In particular, for a1 = cos(φ) and all other Fourier coefficients equal to zero, this equa- 351

tion exactly describes the evolution of the average coupling for the PDDP rule given by 352

equation (3). 353

3.2 Average coupling for general event-based PDDP 354

We consider the general ebPDDP rule represented by equation (7) where F is any 2π- 355

periodic function of the phase difference that can be expanded as a Fourier series according 356

to equation (8). To obtain the corresponding average coupling strength, the Dirac deltas 357

indicating spiking events need to be expressed as functions of neuron’s phases. Since θk 358

is defined mod 2π, we have ∑q δ(t − tqk) ≈ Ωδ(θk) as in (Coombes & Byrne, 2019). We 359

use this approximation to define an ebPDDP rule which depends only on the phases of 360
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the oscillators, 361

dκkl
dt = π (δ(θk) + δ(θl))F (ϕkl). (14)

Using the Fourier expansion of F as before, the corresponding average coupling κ̂ can 362

be obtained as 363

dκ̂
dt = π

∞∑
m=−∞

cm
N2

N∑
k=1

N∑
l=1

(
emiθlδ(θk)e−miθk + e−miθkδ(θl)emiθl

)
.

With θ defined mod 2π, δ(θ) can also be Fourier-expanded as δ(θ) = 1
2π
∑
p∈Z e

piθ (Coombes 364

& Byrne, 2019). Since 365

1
N

N∑
k=1

δ(θk)e±miθk = 1
2πN

N∑
k=1

∑
p∈Z

e(p±m)iθk = 1
2π

∑
p∈Z

1
N

N∑
k=1

epiθk = 1
2π

∑
p∈Z

Z(p),

we obtain 366

dκ̂
dt =

1
2
∑
p∈Z

Z(p)

 ∞∑
m=−∞

cm
(
Z(m) + Z̄(m)

)
=
1 + 2

∞∑
p=1

Re
(
Z(p)

) ∞∑
m=−∞

cmRe
(
Z(m)

)
.

Using the real-valued Fourier coefficients defined in equation (9), this expression becomes 367

dκ̂
dt =

1 + 2
∞∑
p=1

Re
(
Z(p)

)(a0

2 +
∞∑
m=1

amRe
(
Z(m)

))
. (15)

As in the previous subsection, this result can be extended to include a decay term. 368

Simulations show that average weights obtained from equation (15) are similar to 369

average weights obtained from equation (7) as shown in Fig. 7. Although equation (15) 370

is an exact description of the average weight in phase oscillator networks with adaptivity 371

given by equation (14) (where the Dirac deltas are functions of phase), our simulations are 372

based on equation (7) (where the Dirac deltas are functions of time). The approximation 373∑
q δ(t− tqk) ≈ Ωδ(θk) used to derive equation (14) from equation (7) gives rise to the 374

discrepancies visible in Fig. 7. 375

4 Mean-field dynamics of oscillator populations with 376

adaptive coupling 377

Symmetric or nearly symmetric STDP rules can lead to the formation of densely con- 378

nected clusters with homogeneous coupling strength; cf. Section 2.2 and, e.g., (Popovych, 379
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Xenakis, & Tass, 2015; Berner et al., 2019; Röhr, Berner, Lameu, Popovych, & Yanchuk, 380

2019). Specifically, Figure 3 shows the emergence of multiple clusters of distinct mean 381

intrinsic frequencies. For the remainder we will focus on such plasticity rules and in- 382

terpret each cluster as an emergent population of phase oscillators. Suppose that there 383

are M emergent clusters and the corresponding populations µ ∈ {1, . . . ,M} have Nµ 384

oscillators. Rewriting (4) with the cluster labelling, the evolution of θµ,k, the phase of 385

oscillator k ∈ {1, . . . , Nµ} in cluster µ, evolves according to 386

θ̇µ,k = ωµ,k + 1
N

M∑
ν=1

Nν∑
l=1

κµν,kl sin(θν,l − θµ,k), (16)

where κµν,kl is the coupling strength from oscillator l in population ν to oscillator k in 387

population µ. We now suggest a low-dimensional description of the resulting dynamics 388

for populations corresponding to emergent clusters in the fully adaptive network in terms 389

of the population Kuramoto order parameters Zµ := 1
Nµ

∑Nµ

k=1 e
iθk . 390

4.1 Low-dimensional dynamics for homogeneous coupling 391

Using the assumption that the emergent coupling within and between clusters is homo- 392

geneous, we replace individual coupling strengths κµν,kl from oscillators in population ν 393

to oscillators in population µ by the mean coupling strength from population ν to popu- 394

lation µ, 395

κ̂µν = 1
NµNν

Nµ∑
k=1

Nν∑
l=1

κµν,kl. (17)

Writing qµ = Nµ

N
for the relative population size, we obtain 396

θ̇µ,k = ωµ,k +
M∑
ν=1

qν
Nν

κ̂µν

Nµ∑
l=1

sin(θν,l − θµ,k) (18)

that describes homogeneously coupled populations. 397

Such networks of Kuramoto oscillators admit an exact low-dimensional description in 398

terms of the dynamics of the population order parameter Zµ due to the Ott–Antonsen re- 399

duction (Ott & Antonsen, 2008, 2009); see also the recent review (Bick et al., 2020). In the 400

mean-field limit of infinitely large networks, the Kuramoto–Daido order parameters Z(m)
µ 401

for each population µ describe the distribution of oscillators. The key observation for this 402

reduction is that for networks of the form (18) the mth Kuramoto–Daido order param- 403

eter can be expressed as a power of the Kuramoto order parameter Zµ := Z(1)
µ , that is, 404

Z(m)
µ = (Z(1)

µ )m = Zm
µ . If we assume that the intrinsic frequencies ωµ,k are distributed 405

20



according to a Lorentzian with mean Ωµ and width ∆µ, then the dynamics of (18) are 406

determined by 407

dZµ
dt = (−∆µ + iΩµ)Zµ + 1

2

M∑
ν=1

qν κ̂µν(Zν − Z̄νZ
2
µ). (19)

The dynamical equations for the evolving coupling weights can be derived as in Sec- 408

tion 3 and then taking the limit N → ∞. Now the Ott–Antonsen reduction allows us to 409

simplify the expressions through Z(m)
µ = Zm

µ . If individual weights evolve according to 410

the general PDDP rule dκνµ,jk

dt = F (θν,j − θµ,k) then 411

dκ̂µν
dt =

∞∑
m=−∞

cmZ
m
µ Z̄

m
ν . (20)

Similarly, for the event-based rule (14) we note that
(∑

p∈Z Z
(p)
µ

)
= 1−|Zµ|2

1−Zµ−Z̄µ+|Zµ|2 =: f(Zµ) 412

and thus 413
dκ̂µν
dt =

∞∑
m=−∞

cm
(
f(Zµ)Zm

ν + f(Zν)Z̄m
µ

)
. (21)

Decay terms can be incorporated in the same way as above. 414

Note that (19) together with either (20) or (21) form a closed set of equations. In the 415

following we will analyze the dynamics of the reduced equations explicitly. Here, we will 416

focus on the symmetric STDP rule approximated by a single harmonic PPDP rule (3) 417

with φ = 0 such that 418

dκ̂µν
dt = ϵ

(
λRe(ZµZ̄ν) − κ̂µν

)
. (22)

Equations (19) and (22) now form a closed low-dimensional system of coupled adaptive 419

oscillator populations. 420

4.2 Single harmonic PDDP, one population 421

We begin by considering a one-population model to illustrate the types of behaviour 422

possible for a one-cluster state. For a one-population model, the learning rule (22) does 423

not depend on the mean phase. Thus, the phase dynamics decouple leading to two- 424

dimensional effective dynamics3 determined by 425

dκ̂
dt = ϵ

[
λρ2 − κ̂

]
(23)

dρ
dt =

(
−∆ + 1

2 κ̂− 1
2 κ̂ρ

2
)
ρ, (24)

3Note that equilibrium points of the effective dynamics correspond to periodic solutions of the full
system.
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Figure 8: Bifurcation analysis of the mean-field equations for a single population.
One parameter continuation in the heterogeneity parameter ∆ for (23)–(24) with λ = 1 and
ϵ = 0.5. A saddle-node bifurcation occurs at ∆ = 0.125, which corresponds to the analytical
value λ/8.

where ρ := |Z|. Note that, in contrast to mean-field descriptions of Kuramoto oscil- 426

lators with an adaptive global coupling parameter that depend linearly on the mean 427

field Z (Ciszak, Marino, Torcini, & Olmi, 2020), we here have a quadratic dependency. 428

There is a trivial fixed point at κ̂ = 0, ρ = 0. While κ̂ = λρ2, ρ =
√

1 − 2∆
κ̂

defines a 429

pair of non-trivial fixed points, which exist for λ > 8∆. Computing the Jacobian, we find 430

that the trivial solution is stable for all physical parameter values (∆ > 0, ϵ > 0), and for 431

the non-trivial fixed points, one is stable and the other unstable. 432

Using XPPAUT (Ermentrout, 2002), we performed a one parameter continuation in 433

the heterogeneity parameter ∆ (Fig. 8). When the heterogeneity is low, there exists a 434

non-trivial stable fixed point, where the mean coupling does not decay to zero. Whereas 435

after the saddle-node bifurcation at ∆ = 0.125, the mean coupling will always decay to 436

zero and the oscillators will be asynchronous (ρ = 0). As the strength of the plasticity rule 437

λ is increased, the saddle-node moves to the right and the region of bistability (where the 438

trivial and non-trivial fixed points co-exist) increases. These results agree with analytical 439

results outlined above. 440

4.3 Single harmonic PDDP, two populations 441

Next consider two adaptively coupled populations evolving according to 442

dZ1

dt = (−∆ + iΩ)Z1 + 1
2qκ̂11Z1(1 − |Z1|2) + 1

2(1 − q)κ̂12(Z2 − Z̄2Z
2
1) (25)

dZ2

dt = (−∆ + i[Ω + ∆Ω])Z2 + 1
2qκ̂21(Z1 − Z̄1Z

2
2) + 1

2(1 − q)κ̂22Z2(1 − |Z2|2), (26)
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Figure 9: Bifurcation analysis of the mean field equations for a two population
model. One and two parameter continuations for the system of equations given by (25)–
(27) and (22). A: One parameter continuation in intrinsic frequency difference ∆Ω for equally
sized populations (q = 0.5). Given the symmetry in the system, both populations have the
same within-population synchrony and intra-/inter-population coupling strengths. Black solid
(dashed) lines correspond to the stable (unstable) fixed point values for both populations/sets of
coupling strengths. B: Continuation in ∆Ω for q = 0.1. As the mean inter-population coupling
strengths are equal, the curve in panel B3 corresponds to both κ̂12 and κ̂21. C: Two parameter
continuation in the intrinsic frequency difference ∆Ω and the relative size of population 1 q,
showing the saddle-node, pitchfork and torus bifurcation curves. Parameter values: ∆ = 0.1,
Ω = 30, ϵ = 0.5, λ = 1.

where q is the fraction of oscillators in population 1 and ∆Ω is the difference in mean 443

intrinsic frequency between oscillators in each population. The dynamics for the intra- 444

population coupling are as in the one population model, 445

dκ̂µµ
dt = ϵ

[
λ|Zµ|2 − κ̂µµ

]
(27)

for µ ∈ [1, 2], while the inter-population coupling is given by (22). 446

Setting q = 0.5 (two equally sized populations), we perform a one parameter contin- 447

uation in the intrinsic frequency difference ∆Ω (Fig. 9A). We find that for a small range 448

of ∆Ω values (∆Ω ∈ [−0.23, 0.23]) the two populations synchronize in frequency. This 449

frequency-locked solution lies on an invariant set, where the level of synchrony of each 450

population is identical (ρ1 = ρ2) and the coupling strengths are symmetric (κ̂11 = κ̂22, 451
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κ̂12 = κ̂21). The system itself, however, is generally not symmetric (unless ∆Ω = 0) 452

due to distinct intrinsic frequencies resulting in distinct mean phases of the two popula- 453

tions. The two non-trivial equilibrium branches in the inter-population coupling strength 454

(Fig. 9A3), correspond to the in-phase/symmetric solution (positive κ̂µν) and the anti- 455

phase/asymmetric solution (negative κ̂µν). 456

For general population sizes q, an additional branch of solution can emerge, where one 457

population is fully asynchronous and the other is partially synchronized with non-trivial 458

dynamics (e.g., ρ1 = 0, ρ2 ̸= 0); we call this the decoupled solution. More specifically, 459

the structure of the equations implies that ρ1 = κ̂12 = κ̂12 = 0 defines a dynamically 460

invariant set. On this set, the coupling strength κ̂11 decays exponentially and the second 461

population evolves independently of the first one (as the network is decoupled) according 462

to the equations of motion for a single population with adaptive coupling. The decoupled 463

solution now corresponds to the non-trivial solution branch for a single population (Fig. 8), 464

which exists for λ > 8∆. The only difference here is that the coupling κ̂ is replaced by 465

an effective coupling qµκ̂µµ scaled with the (relative) population size. Hence, decoupled 466

solutions only exists for q < 2∆/λ (population 2 has non-trivial dynamics ρ2 ̸= 0) and 467

q > 8∆/λ (population 1 has non-trivial dynamics ρ1 ̸= 0). Note that these are equilibrium 468

points for the effective dynamics but periodic solutions in the full system. 469

Letting q = 0.1, we find and continue the decoupled solution where population 1 is 470

asynchronous and population 2 has non-trivial dynamics (ρ1 = 0, ρ2 ̸= 0) (Fig. 9B). The 471

dynamics of population 1 (population 2) is shown in red (black). The inter-population 472

coupling strengths are equal for all value of values of ∆Ω. Hence, the curve in Fig. 9B3 473

corresponds to κ̂12 and κ̂21. The decoupled solution goes unstable at a torus bifurcation 474

(blue stars) ∆Ω ≈ −0.3 and restabilizes at a second torus bifurcation at ∆Ω ≈ 0.3. The 475

frequency-locked solution branches off the decoupled solution at a pitchfork bifurcation at 476

∆Ω ≈ −0.15 and ∆Ω ≈ 0.15. As in the q = 0.5 case, for the frequency-locked solution, the 477

two populations have non-zero within-population synchrony and intra-/inter-population 478

coupling strengths. However, the within-population synchrony and the intra-population 479

coupling strength are non-longer equal (ρ1 ̸= ρ2, κ̂11 ̸= κ̂22). We note that the trivial 480

solution (ρµ = 0, κ̂µν = 0), which is stable for all values of ∆Ω, is not shown in Fig. 9B, 481

as it would have obscured the unstable region of the decoupled solution. 482

Finally, we performed a two-parameter continuation in ∆Ω and q (Fig. 9C). The 483

saddle-node curves, which demarcate the region of existence for the coupled solution, 484

are shown in green. The coupled solution exists between the two green curves. The 485

orange curve corresponds to the pitchfork bifurcation, where the frequency-locked solution 486

branches off the decoupled solution. There is a global bifurcation at q = 0.2 = 2∆/λ and 487

q = 0.8 = 8∆/λ, when the decoupled solution ceases to exist and, as such, there is no 488
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longer a pitchfork bifurcation. The torus bifurcation curve, where the decoupled solution 489

changes stability, is plotted in blue. In the region between the torus bifurcation curve and 490

the saddle-node bifurcation curve, the two populations have non-trivial dynamics . The 491

inter-population coupling is weak enough that the populations do not entrain. Hence, the 492

mean phases precess at different rates, and as such, the phase difference oscillates in time. 493

As a result, the coupling strengths oscillate as the populations move in- and out-of-phase 494

with each other. Given that the coupling strengths and the synchrony are interdependent, 495

the synchrony variables also oscillate in time. 496

5 Describing the full adaptive network using coupled 497

populations evolving according to mean-field dy- 498

namics 499

In this section, we aim to approximate a network of Kuramoto oscillators (equation (4)) 500

with adaptivity given by symmetric PDDP (equation (3) with φ = 0) using two coupled 501

populations evolving according to the mean-field dynamics. As shown in Section 2.2, the 502

full adaptive network with symmetric PDDP is itself a good approximation of the full 503

adaptive network with symmetric STDP. Here, we optimise parameters of the coupled 504

mean-field equations to best approximate the full network. 505

5.1 Optimising the parameters of the two-population mean-field 506

to approximate the full adaptive network 507

To approximate the full adaptive network, we consider the two-population mean-field 508

model 509
dZµ

dt = (−∆µ + iΩµ)Zµ + 1
2
∑2
ν=1 qν κ̂µν

(
Zν − Z̄νZ

2
µ

)
,

dκ̂µν

dt = ϵµϵν
[
λµλν Re

(
ZµZ̄ν

)
− κ̂µν

]
,

(28)

where µ, ν ∈ {1, 2} are population indices, Zµ is the order parameter of population µ, 510

and κ̂µν is the average weight from population ν to population µ. Synthetic data from 511

the full adaptive network is generated by simulating a network of N = 100 Kuramoto 512

oscillators (equation (4)) with adaptivity given by symmetric PDDP (equation (3) with 513

φ = 0). Further details on the generation of synthetic data, as well as descriptions of the 514

test and training sets can be found in Supplemental Material B. 515

To describe the full adaptive network using the two-population mean-field approxima- 516
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tion (28), we optimise ϵµ and λµ with µ ∈ {1, 2}, as well as the proportion of oscillators 517

allocated to the first population denoted by q1. Note that adaptivity parameters within 518

and between populations (λ1, λ2, ϵ1, ϵ2) are not the same as adaptivity parameters be- 519

tween oscillators in the full network (λ and ϵ). It is also unclear what is the optimal 520

proportion of oscillators to allocate to each population, we therefore optimise the allo- 521

cation of oscillators as follows. We sort oscillators by the average value of their mean 522

outgoing coupling (i.e. ∑N
k=1 κkl/N), and allocate the first 100 × q1% to the first popula- 523

tion, and the rest to the second population (q2 = 1 − q1). This results in populations of 524

size N1 and N2, and initial conditions for equation (28) can be obtained from the initial 525

conditions used to simulate the full adaptive network. For each initial condition, the pa- 526

rameters Ωµ and ∆µ are obtained as the median frequency and half of the interquartile 527

range of the frequency of oscillators in each population, respectively. The optimisation 528

is performed as a sweep over q1 = {0.1, 0.2, 0.3, ..., 0.9}, and for each value of q1, 36 local 529

optimisations over the remaining parameters are carried out. Each local optimisation 530

starts from a random set of parameters, and consists in successive optimisations using 531

patternsearch and fminsearch (MatlabR2021a) over all initial conditions in the training 532

set. 533

The cost function minimised by the optimisation is the average over initial conditions 534

in the training set of 535

c = wρ
∑
n

[ρmod(tn) − ρdat(tn)]2+wψ
∑
n

[ψmod(tn) − ψdat(tn)]2+wκ̂
∑
n

[κ̂mod(tn) − κ̂dat(tn)]2 ,

where tn are all the time points corresponding to the second half of the simulation (to 536

limit the influence of transients), ρ is the modulus of the order parameter of the entire 537

system, ψ is the (unwrapped) phase of the order parameter of the entire system, κ̂ is 538

the mean coupling weight of the entire system, and subscripts “mod” and “dat” refer 539

to equation (28) and synthetic data from the full adaptive network, respectively. The 540

coefficients wρ, wψ, wκ̂ are chosen to ensure that the costs corresponding to ρ, ψ, and κ̂ 541

are on a similar scale. Compared to fitting only to the end point, our approach can capture 542

non-constant behaviours in ρ or κ̂, as well as frequency through phase evolution. For the 543

two-population mean-field approximation, the order parameter of the whole system is 544

obtained as Z = q1Z1 + q2Z2, and similarly the average coupling is obtained as κ̂ = 545

q2
1κ̂11 + q2

2κ̂22 + q1q2κ̂12 + q1q2κ̂21. 546
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5.2 Performance on training set and test set 547

The optimised two-population mean-field approximation with the lowest cost was found 548

for q1 = 0.6 (dark blue in Fig. 10), and its parameters are given in Table C.1 of Supple- 549

mental Material C. To test the model performance, we construct three different control 550

models; (i) a constant model defined from initial conditions by ρ = ρ0 and κ̂ = κ̂0, (ii) a 551

two-population mean-field approximation with q1 = 0.6 as in the fully optimised model, 552

but without adaptivity (ϵ1 = ϵ2 = 0), and (iii) a two-population mean-field approximation 553

where λ1λ2 = 25 and ϵ1ϵ2 = 0.5 are chosen to match λ and ϵ, respectively. For the third 554

control model, we performed as sweep over q1 and found the best fit for q1 = 0.95. 555

The fully optimised two-population mean-field approximation with the lowest cost on 556

the training set is better at describing the dynamics of ρ and κ̂ both on the training set 557

and on the test set than the controls shown in Fig. 10. This shows that to best reproduce 558

synthetic data from the full adaptive model, it is necessary to consider both the evolution 559

of the order parameter and of the average weights, and to optimise the within/between 560

population adaptivity parameters. The constant model is shown in light orange, the 561

two-population mean-field approximation with no adaptivity is shown in dark orange, 562

and the two-population mean-field approximation where the plasticity parameters are 563

not optimised is in light blue. In the test set, the greatest improvement of the optimised 564

two-population mean-field approximation over the controls is for κ̂ (Fig. 10D). With the 565

exception of the constant model, the controls already approximate ρ well in the test set 566

(Fig. 10C). Representative trajectories of the two-population mean-field approximation 567

obtained from initial conditions in the test set approximate the network synchrony, phase, 568

and average coupling of synthetic data from the full adaptive network (see Figure C.10 in 569

the Appendix). The approximation of κ̂ is overall better when ϵµ and λµ are optimised. 570

We note that while transients were not included in the cost function used to fit to syn- 571

thetic data, they are relatively well described by the model when starting from random 572

connectivity with different means in the test set (see Fig C.10). 573

6 Discussion 574

Using simulations, we showed that PDDP and ebPDDP can provide useful approximations 575

of STDP. In particular, single-harmonic rules can approximate simple forms of symmetric 576

STDP, while multi-harmonic rules are required to accurately approximate causal STDP. In 577

the latter case, the accuracy of the approximation increases with the number of Fourier 578

coefficients before reaching a plateau. The Fourier coefficients can be easily computed 579

using analytical expressions only involving causal STDP parameters (equation (9)). We 580
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Figure 10: Performance of the two-population mean-field approximation. Each panel
compares the sum of squared differences over time between model and synthetic data for ρ or κ̂,
averaged over the training set or test set. The two-population mean-field approximation with
optimised plasticity parameters is shown in dark blue, the two-population mean-field approx-
imation with plasticity parameters obtained from the full system is shown in light blue, the
two-population model without adaptivity is shown in dark orange, and the constant model is
shown in orange. Training and test sets are composed of 13 and 20 trajectories, respectively,
with varied initial conditions (more details in Section B in the Appendix).

found ebPDDP to be a slightly better approximation than PDDP both in the case of 581

symmetric STDP and causal STDP. This is expected since contrary to PDDP, ebPDDP 582

restricts synaptic weight updates to spiking events, which is conceptually closer to STDP. 583

One limitation of approximating STDP using plasticity rules based on phase difference is 584

that the evolution of phase differences is required to be slower than the phase dynamics 585

(Lücken et al., 2016). Under this assumption, the intricate evolution of coupling weights 586

can be well approximated by PDDP and ebPDDP (see e.g Fig. C.1 and Fig. C.5 in 587

Supplemental Material C). For best results, the STDP function should also decay to 588

zero faster than the network mean frequency for both positive and negative spike-timing 589

differences (in the case of causal STDP to avoid both components in equation (6) strongly 590

overlapping). 591

We derived exact expressions for the evolution of the average coupling weight in net- 592

works of phase oscillators with PDDP and ebPDDP. These expressions make no assump- 593

tion about the underlying network (in particular no assumption about the strength and 594

type of coupling between oscillators), and are compatible with any plasticity rule based on 595

phase difference as long as it can be expended as a Fourier series of the phase difference. 596

As a proof of principle, we focussed on mean-field approximations based on the average 597

coupling evolution for two-cluster states in a population of adaptive Kuramoto oscillators, 598

and performed a bifurcation analysis to highlight the different possible behaviours. Here 599

we have focussed predominantly on the Kuramoto model with adaptivity rules that mimic 600
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the adaptation between individual neural cells. However, as a prototypical model to study 601

synchronisation in neuroscience, the Kuramoto model has also found application on dif- 602

ferent scales including whole-brain modelling, epilepsy, and Parkinson’s disease (Cumin 603

& Unsworth, 2007; Breakspear, Heitmann, & Daffertshofer, 2010; Cabral et al., 2014; 604

Schmidt, LaFleur, de Reus, van den Berg, & van den Heuvel, 2015; Ponce-Alvarez et al., 605

2015; Finger et al., 2016; Asllani, Expert, & Carletti, 2018; Weerasinghe et al., 2019; Bick 606

et al., 2020; Weerasinghe et al., 2021; Duchet, Sermon, Weerasinghe, Denison, & Bogacz, 607

2022). While here each Kuramoto oscillator typically represents neural populations rather 608

than individual cells, our results may still help understand the role of adaptivity in such 609

networks—albeit with potentially different adaptivity rules on different time scales. 610

Our framework could easily be adapted to consider more biologically realistic oscillator 611

models, such as the θ-neuron model or the formally equivalent quadratic integrate-and- 612

fire (QIF) neuron model. Like the Kuramoto model, the θ-neuron model is amenable to 613

the Ott-Antonsen ansatz, and as such, is amenable to exact mean-field description (Luke, 614

Barreto, & So, 2013) (for the QIF model use the equivalent Lorentzian ansatz (Montbrió, 615

Pazó, & Roxin, 2015)). The model analysis would be identical, but given the explicit 616

phase dependency in the coupling, we can expect a richer set of dynamics for a network 617

of θ-neurons than observed here for Kuramoto oscillators. We could also include explicit 618

synaptic variables, as in (Byrne, O’Dea, Forrester, Ross, & Coombes, 2020), to more 619

accurately model synaptic processing. More generally, under the assumption of weak 620

coupling even more detailed neuron models, such as the Hodgkin-Huxley model, can be 621

approximated by networks of phase oscillators through phase reduction (Brown, Moehlis, 622

& Holmes, 2004; Pietras & Daffertshofer, 2019). While the resulting phase equations will 623

generically contain higher-order terms that affect the global dynamics, a truncation to 624

first order (i.e., Kuramoto-type coupling) can still provide suitable approximation where 625

the first harmonics are dominant and shape the dynamics. While generic higher-order 626

terms may break the Ott-Antonsen Ansatz, its extensions (see, for example, (Vlasov, 627

Rosenblum, & Pikovsky, 2016; Tyulkina, Goldobin, Klimenko, & Pikovsky, 2018)) or more 628

general moment closure approaches (Kuehn, 2016) can provide suitable approximations 629

that do not rely on a single order parameter to capture clustering—the dynamics of 630

the mean coupling strength may then depend on more than a single order parameter. 631

Indeed, previous studies of adaptive oscillators (Berner et al., 2019), and our full network 632

simulations, point to the existence of three-, four- and five-cluster states that motivate 633

extending the results presented here. Although computationally expensive and, perhaps, 634

numerically challenging, both the bifurcation analysis and model fitting could be extended 635

to consider more than two clusters. 636

Combining theoretical insight and data-driven inference, we fitted a two-cluster mean- 637
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field approximation to a full adaptive network of Kuramoto oscillators in order to obtain a 638

low-dimensional representation of the full system. The goal here is not to find a relation- 639

ship between model parameters and (microscopic) parameters that could be measured in 640

the brain (which is hardly ever possible with limited data), but to find a mean-field model 641

with plasticity that can be used to describe population-level recordings, such as local field 642

potentials. While the two-cluster mean-field model can approximate the full adaptive 643

network on the test set, the accuracy of the approximation could be improved in several 644

ways. First, a richer training set could be used. Second, the mean-field description of 645

the order parameter is not exact, and a moment or cumulant approach may capture more 646

of the full system dynamics (Tyulkina et al., 2018). Third, considering more than two 647

populations may provide a more accurate approximation. Fourth, rather than allocating 648

oscillators to clusters by thresholding their mean outgoing coupling, a finer partition could 649

be learnt (Snyder, Zlotnik, & Lokhov, 2020). Nevertheless, data-driven inference of low- 650

dimensional representations of phase-oscillator networks (Thiem, Kooshkbaghi, Bertalan, 651

Laing, & Kevrekidis, 2020; Snyder et al., 2020; Fialkowski et al., 2022) is a promising 652

approach to approximate the behavior of networks with STDP. Once clusters have been 653

identified, a very recent mean-field technique based on the collective coordinate method 654

can be used (Fialkowski et al., 2022). 655

More general types of STDP call for extensions of our framework. First, one would 656

naturally expect that the strength of plastic connections are bounded. We included soft 657

bounds in our investigation of symmetric STDP through a dampening term (see equa- 658

tion (3)), which is conserved in the average coupling (equation (13)), and is therefore 659

present in the mean-field analyses carried out in Section 4 and 5. While neither soft nor 660

hard bounds can easily be included in the average coupling derivation for causal STDP, we 661

show that short transients of causal STDP with hard bounds are well captured by causal 662

PPDP/ebPPD without bounds (see Fig. C.6 and Fig. C.7 in Supplemental Material C). 663

Second, we primarily focused on symmetric STDP rules, that is, interchanging the order 664

of spikes does will have little to no effect on the change of connection strength. For such 665

adaptation, the network naturally forms clusters of strongly connected units (cf. Fig. 3). 666

By contrast, the causality of traditional asymmetric STDP rules will be reflected in the 667

network structure as shown in Fig. 5 and highlighted very recently in (Thiele, Berner, 668

Tass, Schöll, & Yanchuk, 2023). To analyze the mean-field dynamics of such networks, a 669

natural approach would be to computationally identify emerging feed-forward structures 670

in such networks instead of looking for clusters. In this case, finding a corresponding low- 671

dimensional description as in Section 4 is more challenging. Third, we consider STDP 672

adaptation rules that depend on pairs of oscillator states. More elaborate, spike-based 673

rules such as triplet interactions have recently attracted attention (Pfister & Gerstner, 674
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2006; Montangie, Miehl, & Gjorgjieva, 2020). It would be interesting to have such adapta- 675

tion reflected in the STDP model as these could be interpreted as “higher-order” network 676

effects (cf. (Bick, Gross, Harrington, & Schaub, 2021)). 677

As a step towards low-dimensional description of adaptive networks with STDP, our 678

framework has implications for the study of long-term neural processes. In particular, 679

the effects of clinically available DBS quickly disappear when stimulation is turned off, 680

thus stimulation needs to be provided continuously. To spare physiological activity as 681

much as possible, it would therefore be highly desirable to design stimuli aimed at elic- 682

iting long-lasting effects. Continuous stimulation can also lead to habituation, where 683

stimulation benefits diminish considerably over the years in some patients with essential 684

tremor (Fasano & Helmich, 2019). Optimising brain stimulation to have long-lasting ef- 685

fects so far relied on computational studies e.g. (Tass & Majtanik, 2006; Popovych & 686

Tass, 2012; Ebert, Hauptmann, & Tass, 2014; Popovych et al., 2015; Manos, Zeitler, & 687

Tass, 2018), or on analytical insights under the simplifying assumption that spiking is 688

only triggered by stimulation pulses (Kromer & Tass, 2020). Other analytical approaches 689

based on mean-field models are focused on short-term changes due to stimulation and do 690

not consider plastic changes (Duchet et al., 2020; Weerasinghe et al., 2019, 2021). Our 691

framework offers an alternative, where exact evolution equations for the average coupling 692

within and between neural populations could inform the development of new therapies 693

aimed at maximising the long-term effects of brain stimulation. Although microscopic 694

connectivity is unknown, stimulation can be designed to change average connectivity and 695

impact synchrony as beneficial. 696
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Supplemental Material 708

A Simulation methods used to compare STDP to 709

PDDP 710

Using simulations, we compare networks of Kuramoto oscillators with adaptivity given 711

by symmetric or causal STDP, to the same networks with adaptivity given by the corre- 712

sponding single- or multi-harmonic PDDP and ebPDDP rules. 713

A.1 Symmetric learning rules 714

We simulate networks of N = 60 Kuramoto oscillators evolving according to equation (4), 715

where the natural frequencies ωk are sampled from a normal distribution of mean Ω = 10π 716

(5Hz) unless otherwise stated and standard deviation ∆. A normal distribution was 717

chosen over a Lorentzian distribution to avoid extreme natural frequencies which lead to 718

increased variability in simulation repeats. Initial conditions are also sampled from normal 719

distributions. Phases θk(t = 0s) are sampled from N (0, π2/9), and couplings κkl(t = 720

0s) from N (5, σ2
κ). The evolution of the coupling weights κkl is simulated according to 721

equation (2) (symmetric STDP) together with the weight decay dκkl

dt = −ϵκkl, equation (3) 722

with φ = 0 (symmetric PDDP), or equation (5) (symmetric ebPDDP). For ebPDDP, we 723

use δ(t− tqk) ≈ 1Iq
k
(t)/∆t where 1Iq

k
is the indicator function of Iqk = [tqk, t

q
k+∆t) and ∆t is 724

the simulation time step. The network is simulated for 150s, using the Euler method with 725

∆t = 1ms unless otherwise stated. We use ϵ = 0.5, and the values of other parameters 726

are detailed in Fig. 3 and Fig. C.1. 727

A.2 Causal learning rules 728

Error metrics (described below) are computed between multi-harmonic PDDP or ebPDDP 729

and causal STDP for selected regions of parameter space. To limit computational cost, we 730

constrain causal STDP parameters based on data and biological motivations. We use τ+ = 731

16.8ms and τ− = 33.7ms, which were obtained by fitting equation (1) to experimental data 732

(data published in (Bi & Poo, 1998), and fit in (Bi & Poo, 2001)). Several experimental 733

studies have reported the LTD time constant τ− to be larger than the LTP time constant 734
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τ+, e.g. in the rat hippocampus (Bi & Poo, 1998), somatosensory cortex (Feldman, 2000), 735

and visual cortex (Froemke & Dan, 2002). We take A+ = 0.2 and A−/A+ = β. Since the 736

time window for LTD is twice as long as the time window for LTP, we choose β = 0.5 to 737

study a balanced situation where LTP dominates for shorter spike-timing differences and 738

LTD dominates for longer spike-timing differences, and β = 1 to study a situation where 739

LTD always dominates. 740

We simulate networks of Kuramoto oscillators as for symmetric STDP (see previous 741

section) with the following differences. Initial couplings κkl(t = 0s) are sampled from 742

N (12, σ2
κ). The evolution of the coupling weights κkl is simulated according to equa- 743

tion (1) (causal STDP), equation (6) (causal PDDP), or equation (7) (causal ebPDDP). 744

For PDDP and ebPDDP, the Fourier expansion of F is truncated after Nf coefficients. 745

No weight decay term is included. 746

The comparison of multi-harmonic PDDP or ebPDDP to causal STDP relies on four 747

error metrics. In the following error metric definitions, we use the subscript or superscript 748

X to refer to quantities corresponding to multi-harmonic PDDP or ebPDDP. To compare 749

the time evolution of network synchrony we define 750

eρ =
〈
[ρX(t) − ρSTDP(t)]2

〉
, (29)

where ⟨.⟩ denotes time averaging over the duration of the simulation [0, tmax], and ρ(t) = |Z(t)|751

is the network synchrony. To compare the time evolution of the network average coupling 752

we compute 753

eκ̂ =
〈
[κ̂X(t) − κ̂STDP(t)]2

〉
, (30)

where the average coupling is given by equation (10). The time evolution of the weight 754

distribution is compared using 755

ehist(κkl) = n2
bins
N4

〈
nbins∑
j=1

[
hX
j (t) − hSTDP

j (t)
]2〉

, (31)

where hj(t) is the count of couplings weights falling into the jth bin in the histogram 756

of coupling weights at time t (bin boundaries are taken identical across rules and time 757

for a given set of parameters). The fourth error metric rκ∞
kl

is the Pearson’s correlation 758

coefficient between the STDP coupling matrix and the PDDP/ebPDDP coupling matrix 759

at the last stimulation time point. The scaling factors in equation (31) and the choice 760

of a correlation measure for the fourth metric ensure that the corresponding metrics 761

are independent of the size of the network, and of the number of bins. For each set of 762

parameters, the four metrics are averaged across five repeats. For a given repeat and 763
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a given set of parameters, the same random samples are used as initial conditions to 764

compare the network evolution between plasticity rules. 765

B Methodological details pertaining to the optimisa- 766

tion of the two-population mean-field approxima- 767

tion 768

Synthetic data is generated by stimulating N = 100 Kuramoto oscillators evolving accord- 769

ing to equation (4), with adaptivity given by symmetric PDDP (equation (3) with φ = 0, 770

λ = 25, and ϵ = 0.5). Oscillator natural frequencies ωk are sampled from a Lorentzian 771

distribution of center Ω = 10π (5Hz) and width ∆ = 0.6π. Initial phases are sampled 772

from a Von Mises distribution of standard deviation π/4. Initial couplings κkl(t = 0s) 773

are sampled from N (κ̂0, 0.52). The network is simulated for 20s, using the Euler method 774

with ∆t = 0.1ms. 775

We create a training set and a test set based on different initial conditions and in partic- 776

ular various κ̂0. The training set corresponds to κ̂0 = {2, 2, 2, 3, 4, 5, 5, 10, 10, 15, 15, 15, 20}, 777

and the test set to κ̂0 = {3.5, 3.5, 3.5, 3.5, 7, 7, 7, 7, 12, 12, 12, 12, 17, 17, 17, 17, 22, 22, 22, 22}. 778

For each trajectory in the training and test sets, natural frequencies, initial phases, and 779

initial couplings are sampled from their respective distributions. Repeated κ̂0 values 780

therefore correspond to different systems with different initial synchrony. 781

For optimisation speed and accuracy the two-population mean-field approximation is 782

simulated using the variable order solver ode113 in Matlab (variable-step, variable-order 783

Adams-Bashforth-Moulton solver of orders 1 to 13). 784

C Supplementary figures and tables 785

Parameter ϵ1 ϵ2 λ1 λ2
Value 0.0263 3.0262 5.2985 5.4759

Table C.1: Best parameters of two-population mean-field approximation. Parameters
correspond to equation (28). Full network parameters used to generate synthetic data for the
optimisation are given in Section B.
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Figure C.1: Comparison between symmetric STDP and PDDP in a Kuramoto
network (desynchronised state). A: Evolution of the distribution of coupling weights with
time (100 bins at each time point). The average weight is represented by a thin black line.
STDP is shown in A1, PDDP in A2, and ebPDDP in A3. B: Coupling matrix at t = 150s,
with oscillators sorted by natural frequency. STDP is shown in B1, PDDP in B2, and ebPDDP
in B3. C: Time evolution of average coupling (C1, error bars represent the standard error of
the mean over 5 repeats, too small to see) and network synchrony (C2-C3). STDP is shown
in black, PDDP in blue, and ebPDDP in red. [a = 0.025822, b = 0.049415, σκ = 3, ∆ = 0.2π,
Ω = 10π (5Hz)]
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Figure C.2: Comparison between STDP and PDDP in a Kuramoto network, [β =
0.5, σκ = 3, ∆ = 1.8π, Ω = 10π (5Hz)]. Results for PDDP and ebPDDP are shown for 1,
5, and 25 Fourier components Nf (first, second, and third column on the right hand side of the
figure, respectively). A: Evolution of the distribution of coupling weights with time (100 bins
at each time point). The average weight is represented by a thin black line. STDP is shown in
A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at t = 150s, with oscillators
sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4, and ebPDDP in B5-B7.
C: Time evolution of average coupling (C1, error bars represent the standard error of the mean
over 5 repeats) and network synchrony (C2-C7). STDP is shown in black, PDDP in blue, and
ebPDDP in red.
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Figure C.3: Comparison between STDP and PDDP in a Kuramoto network, [β = 1,
σκ = 0.2, ∆ = 0.6π, Ω = 10π (5Hz)]. Results for PDDP and ebPDDP are shown for 1, 5,
and 25 Fourier components Nf (first, second, and third column on the right hand side of the
figure, respectively). A: Evolution of the distribution of coupling weights with time (100 bins
at each time point). The average weight is represented by a thin black line. STDP is shown in
A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at t = 150s, with oscillators
sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4, and ebPDDP in B5-B7.
C: Time evolution of average coupling (C1, error bars represent the standard error of the mean
over 5 repeats) and network synchrony (C2-C7). STDP is shown in black, PDDP in blue, and
ebPDDP in red.
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Figure C.4: Comparison between STDP and PDDP in a Kuramoto network, [β = 1,
σκ = 3, ∆ = 1.8π, Ω = 10π (5Hz)]. Results for PDDP and ebPDDP are shown for 1, 5,
and 25 Fourier components Nf (first, second, and third column on the right hand side of the
figure, respectively). A: Evolution of the distribution of coupling weights with time (100 bins
at each time point). The average weight is represented by a thin black line. STDP is shown in
A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at t = 150s, with oscillators
sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4, and ebPDDP in B5-B7.
C: Time evolution of average coupling (C1, error bars represent the standard error of the mean
over 5 repeats) and network synchrony (C2-C7). STDP is shown in black, PDDP in blue, and
ebPDDP in red.
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Figure C.5: Comparison between STDP and PDDP in a Kuramoto network, [β =
0.5, σκ = 0.2, ∆ = 0.6π, Ω = 40π (20Hz), ∆t = 0.1ms]. Results for PDDP and ebPDDP
are shown for 5, 25, and 75 Fourier components Nf (first, second, and third column on the
right hand side of the figure, respectively). A: Evolution of the distribution of coupling weights
with time (100 bins at each time point). The average weight is represented by a thin black
line. STDP is shown in A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at
t = 150s, with oscillators sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4,
and ebPDDP in B5-B7. C: Time evolution of average coupling (C1, error bars represent the
standard error of the mean over 5 repeats) and network synchrony (C2-C7). STDP is shown in
black, PDDP in blue, and ebPDDP in red. 39



Figure C.6: Comparison between STDP with hard bounds and PDDP without
bounds in a Kuramoto network, [β = 1, σκ = 0.2, ∆ = 0.6π, Ω = 10π (5Hz)]. Results
for PDDP and ebPDDP are shown for Nf = 40 Fourier components. For STDP, hard bounds
are enforced such that no individual weight can go below 0 or above 30. A: Evolution of the
distribution of coupling weights with time (100 bins at each time point). The average weight is
represented by a thin black line. STDP with hard bounds is shown in A1, PDDP without bounds
in A2, and ebPDDP without bounds in A3. B: Coupling matrix at t = 12s, with oscillators
sorted by natural frequency. STDP with hard bounds is shown in B1, PDDP without bounds
in B2, and ebPDDP without bounds in B3. C: Time evolution of average coupling (C1, error
bars represent the standard error of the mean over 5 repeats) and network synchrony (C2-C3).
STDP with hard bounds is shown in black, PDDP without bounds in blue, and ebPDDP without
bounds in red.
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Figure C.7: Comparison between STDP with hard bounds and PDDP without
bounds in a Kuramoto network, [β = 0.5, σκ = 3, ∆ = 1.8π, Ω = 10π (5Hz)]. Results
for PDDP and ebPDDP are shown for Nf = 40 Fourier components. For STDP, hard bounds
are enforced such that no individual weight can go below 0 or above 30. A: Evolution of the
distribution of coupling weights with time (100 bins at each time point). The average weight is
represented by a thin black line. STDP with hard bounds is shown in A1, PDDP without bounds
in A2, and ebPDDP without bounds in A3. B: Coupling matrix at t = 12s, with oscillators
sorted by natural frequency. STDP with hard bounds is shown in B1, PDDP without bounds
in B2, and ebPDDP without bounds in B3. C: Time evolution of average coupling (C1, error
bars represent the standard error of the mean over 5 repeats) and network synchrony (C2-C3).
STDP with hard bounds is shown in black, PDDP without bounds in blue, and ebPDDP without
bounds in red.
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Figure C.8: Influence of Nf , ∆t, and network frequency on error metrics. Error
metrics for PDDP compared to STDP for the time evolution of network synchrony eρ, average
coupling eκ̂ and distribution of weights ehist(κkl), and for the coupling matrix at the last stimu-
lation point rκ∞

kl
are shown in the first, second, third, and fourth columns, respectively. Results

for PDDP are in blue, and for ebPDDP in red. Showing sem error bars over 5 repeats. A: In-
fluence of the number of Fourier coefficients Nf on the error metrics for the parameters used
in Fig. C.2 (β = 0.5, σκ = 3, ∆ = 1.8π, Ω = 10π) in the first row, in Fig. C.3 (β = 1, σκ = 0.2,
∆ = 0.6π, Ω = 10π) in the second row, in Fig. C.4 (β = 1, σκ = 3, ∆ = 1.8π, Ω = 10π) in the
third row. B: Influence of the time step ∆t for the parameters used in Fig. 5 (β = 0.5, σκ = 0.2,
∆ = 0.6π, Ω = 10π) and Nf = 40. C: Influence of the number of Fourier coefficients Nf on error
metrics for the parameters used in the 20Hz example, see Fig. C.5 (β = 0.5, σκ = 0.2, ∆ = 0.6π,
Ω = 40π, ∆t = 0.1ms).
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Figure C.9: Influence of σκ, ∆, and β on error metrics (slices through parameter
space). Error metrics for PDDP compared to STDP for the time evolution of network synchrony
eρ (first and fifth columns), average coupling eκ̂ (second and sixth columns) and distribution of
weights ehist(κkl) (third and seventh columns), and for the coupling matrix at the last stimulation
point rκ∞

kl
(fourth and eighth columns). Results for PDDP are in blue, and for ebPDDP in red.

Each of the panels represents a different slice through parameter space as indicated by the axes.
The error metrics are shown for Nf = 40 Fourier components, with sem error bars over 5 repeats.
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Figure C.10: Representative trajectories from initial conditions in the test set. The
two-population mean-field approximation with optimised plasticity parameters is shown in dark
blue, the two-population mean-field approximation with plasticity parameters obtained from the
full system is shown in light blue, and synthetic data from the full adaptive Kuramoto network is
shown in black. The first row shows the network synchrony, the second row the network phase,
and the third row the network average coupling.
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