688 research outputs found

    A Herschel PACS survey of the dust and gas in Upper Scorpius disks

    Get PDF
    We present results of far-infrared photometric observations with Herschel PACS of a sample of Upper Scorpius stars, with a detection rate of previously known disk-bearing K and M stars at 70, 100, and 160 micron of 71%, 56%, and 50%, respectively. We fit power-law disk models to the spectral energy distributions of K & M stars with infrared excesses, and have found that while many disks extend in to the sublimation radius, the dust has settled to lower scale heights than in disks of the less evolved Taurus-Auriga population, and have much reduced dust masses. We also conducted Herschel PACS observations for far-infrared line emission and JCMT observations for millimeter CO lines. Among B and A stars, 0 of 5 debris disk hosts exhibit gas line emission, and among K and M stars, only 2 of 14 dusty disk hosts are detected. The OI 63 micron and CII 157 micron lines are detected toward [PZ99] J160421.7-213028 and [PBB2002] J161420.3-190648, which were found in millimeter photometry to host two of the most massive dust disks remaining in the region. Comparison of the OI line emission and 63 micron continuum to that of Taurus sources suggests the emission in the former source is dominated by the disk, while in the other there is a significant contribution from a jet. The low dust masses found by disk modeling and low number of gas line detections suggest that few stars in Upper Scorpius retain sufficient quantities of material for giant planet formation. By the age of Upper Scorpius, giant planet formation is essentially complete.Comment: 48 pages, 14 figures, accepted A&

    Determination of the high strain rate forming properties of steel sheet

    Get PDF
    The strain rate dependence of the plastic yield and failure properties displayed by most metals affects energies, forces and forming limits involved in high speed forming processes. In this contribution a technique is presented to assess the influence of the strain rate on the forming properties of steel sheets. In a first step, static and high strain rate tensile experiments are carried out in order to characterize the materials strain rate dependent behaviour. In a second step, the phenomenological Johnson-Cook model and physically-based Voce model are used to describe the constitutive material behaviour. The test results are subsequently used to calculate the forming limit diagrams by a technique based on the Marciniak-Kuczynski model. With the developed technique, static and dynamic forming limit diagrams are obtained for a commercial DC04 steel and a laboratory made CMnAl TRIP steel. The results clearly indicate that increasing the strain rate during a forming process can have a positive or negative effect

    Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses

    Full text link
    Context. Brown dwarfs represent a sizable fraction of the stellar content of our Galaxy and populate the transition between the stellar and planetary mass regime. There is however no agreement on the processes responsible for their formation. Aims. We have conducted a large survey of the young, nearby cluster IC 348, to uncover its low-mass brown dwarf population and study the cluster properties in the substellar regime. Methods. Deep optical and near-IR images taken with MegaCam and WIRCam at the Canada-France-Hawaii Telescope (CFHT) were used to select photometric candidate members. A spectroscopic follow-up of a large fraction of the candidates was conducted to assess their youth and membership. Results. We confirmed spectroscopically 16 new members of the IC 348 cluster, including 13 brown dwarfs, contributing significantly to the substellar census of the cluster, where only 30 brown dwarfs were previously known. Five of the new members have a L0 spectral type, the latest-type objects found to date in this cluster. At 3 Myr, evolutionary models estimate these brown dwarfs to have a mass of ~13 Jupiter masses. Combining the new members with previous census of the cluster, we constructed the IMF complete down to 13 Jupiter masses. Conclusions. The IMF of IC 348 is well fitted by a log-normal function, and we do not see evidence for variations of the mass function down to planetary masses when compared to other young clusters.Comment: Accepted to A&A (8 November 2012

    Discovery of an extended debris disk around the F2V star HD 15745

    Full text link
    Using the Advanced Camera for Surveys aboard the Hubble Space Telescope, we have discovered dust-scattered light from the debris disk surrounding the F2V star HD 15745. The circumstellar disk is detected between 2.0" and 7.5" radius, corresponding to 128 - 480 AU radius. The circumstellar disk morphology is asymmetric about the star, resembling a fan, and consistent with forward scattering grains in an optically thin disk with an inclination of ~67 degrees to our line of sight. The spectral energy distribution and scattered light morphology can be approximated with a model disk composed of silicate grains between 60 and 450 AU radius, with a total dust mass of 10E-7 M_sun (0.03 M_earth) representing a narrow grain size distribution (1 - 10 micron). Galactic space motions are similar to the Castor Moving Group with an age of ~10E+8 yr, although future work is required to determine the age of HD 15745 using other indicators.Comment: 7 pages, 4 figures, ApJ Letters, in pres

    A discontinuity in the low-mass initial mass function

    Full text link
    The origin of brown dwarfs (BDs) is still an unsolved mystery. While the standard model describes the formation of BDs and stars in a similar way recent data on the multiplicity properties of stars and BDs show them to have different binary distribution functions. Here we show that proper treatment of these uncovers a discontinuity of the multiplicity-corrected mass distribution in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be discarded with extremely high confidence. This suggests that VLMSs and BDs on the one hand, and stars on the other, are two correlated but disjoint populations with different dynamical histories. The analysis presented here suggests that about one BD forms per five stars and that the BD-star binary fraction is about 2%-3% among stellar systems.Comment: 14 pages, 11 figures, uses emulateapj.cls. Minor corrections and 1 reference added after being accepted by the Ap

    The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor

    Full text link
    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req=125-km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.Comment: 13 pages, 3 figures, 2 table

    High-spin structures of 88Kr and 89Rb: Evolution from collective to single-particle behaviors

    Full text link
    The high-spin states of the two neutron-rich nuclei, 88Kr and 89R have been studied from the 18O + 208Pb fusion-fission reaction. Their level schemes were built from triple gamma-ray coincidence data and gamma-gamma angular correlations were analyzed in order to assign spin and parity values to most of the observed states. The two levels schemes evolve from collective structures to single-particle excitations as a function of the excitation energy. Comparison with results of shell-model calculations gives the specific proton and neutron configurations which are involved to generate the angular momentum along the yrast lines.Comment: 12 pages, 9 figures, Physical Review C (2013) in pres

    High-spin structures of 136Cs

    Get PDF
    Odd-odd 136Cs nuclei have been produced in the 18O + 208Pb and 12C + 238U fusion-fission reactions and their gamma rays studied with the Euroball array. The high-spin level scheme has been built up to ~ 4.7 MeV excitation energy and spin I ~ 16 hbar from the triple gamma-ray coincidence data. The configurations of the three structures observed above ~ 2 MeV excitation energy are first discussed by analogy with the proton excitations identified in the semi-magic 137Cs nucleus, which involve the three high-j orbits lying above the Z=50 gap, pi g_{7/2}, pi d_{5/2} and pi h_{11/2}. This is confirmed by the results of shell-model calculations performed in this work.Comment: 6 pages, 4 figures, 3 table

    Visual Binaries in the Orion Nebula Cluster

    Full text link
    We have carried out a major survey for visual binaries towards the Orion Nebula Cluster using HST images obtained with an H-alpha filter. Among 781 likely ONC members more than 60" from theta-1 Ori C, we find 78 multiple systems (75 binaries and 3 triples), of which 55 are new discoveries, in the range from 0.1" to 1.5". About 9 binaries are likely line-of-sight associations. We find a binary fraction of 8.8%+-1.1% within the limited separation range from 67.5 to 675 AU. The field binary fraction in the same range is a factor 1.5 higher. Within the range 150 AU to 675 AU we find that T Tauri associations have a factor 2.2 more binaries than the ONC. The binary separation distribution function of the ONC shows unusual structure, with a sudden steep decrease in the number of binaries as the separation increases beyond 0.5", corresponding to 225 AU. We have measured the ratio of binaries wider than 0.5" to binaries closer than 0.5" as a function of distance from the Trapezium, and find that this ratio is significantly depressed in the inner region of the ONC. The deficit of wide binaries in the central part of the cluster is likely due to dissolution or orbital change during their passage through the potential well of the inner cluster region. Many of the companions are likely to be brown dwarfs.Comment: 27 pages, 10 figures, 2 tables, accepted by the Astronomical Journa

    The AU Microscopii Debris Disk: Multiwavelength Imaging and Modeling

    Full text link
    (abridged) Debris disks around main sequence stars are produced by the erosion and evaporation of unseen parent bodies. AU Microscopii (GJ 803) is a compelling object to study in the context of disk evolution across different spectral types, as it is an M dwarf whose near edge-on disk may be directly compared to that of its A5V sibling beta Pic. We resolve the disk from 8-60 AU in the near-IR JHK' bands at high resolution with the Keck II telescope and adaptive optics, and develop a novel data reduction technique for the removal of the stellar point spread function. The point source detection sensitivity in the disk midplane is more than a magnitude less sensitive than regions away from the disk for some radii. We measure a blue color across the near-IR bands, and confirm the presence of substructure in the inner disk. Some of the structural features exhibit wavelength-dependent positions. The disk architecture and characteristics of grain composition are inferred through modeling. We approach the modeling of the dust distribution in a manner that complements previous work. Using a Monte Carlo radiative transfer code, we compare a relatively simple model of the distribution of porous grains to a broad data set, simultaneously fitting to midplane surface brightness profiles and the spectral energy distribution. Our model confirms that the large-scale architecture of the disk is consistent with detailed models of steady-state grain dynamics. Here, a belt of parent bodies from 35-40 AU is responsible for producing dust that is then swept outward by the stellar wind and radiation pressures. We infer the presence of very small grains in the outer region, down to sizes of ~0.05 micron. These sizes are consistent with stellar mass-loss rates Mdot_* << 10^2 Mdot_sun.Comment: ApJ accepted, 56 pages, preprint style. Version in emulateapj with high-resolution figures available at http://tinyurl.com/y6ent
    corecore