967 research outputs found

    Substellar multiplicity in the Hyades cluster

    Full text link
    We present the first high-angular resolution survey for multiple systems among very low-mass stars and brown dwarfs in the Hyades open cluster. Using the Keck\,II adaptive optics system, we observed a complete sample of 16 objects with estimated masses \lesssim0.1 Msun. We have identified three close binaries with projected separation \lesssim0.11", or \lesssim5 AU. A number of wide, mostly faint candidate companions are also detected in our images, most of which are revealed as unrelated background sources based on astrometric and/or photometric considerations. The derived multiplicity frequency, 19+13/-6 % over the 2-350 AU range, and the rarity of systems wider than 10 AU are both consistent with observations of field very low-mass objects. In the limited 3-50 AU separation range, the companion frequency is essentially constant from brown dwarfs to solar-type stars in the Hyades cluster, which is also in line with our current knowledge for field stars. Combining the binaries discovered in this surveys with those already known in the Pleiades cluster reveals that very low-mass binaries in open clusters, as well as in star-forming regions, are skewed toward lower mass ratios (0.6q0.80.6 \lesssim q \lesssim 0.8) than are their field counterparts, a result that cannot be accounted for by selection effects. Although the possibility of severe systematic errors in model-based mass estimates for very low-mass stars cannot be completely excluded, it is unlikely to explain this difference. We speculate that this trend indicates that surveys among very low-mass field stars may have missed a substantial population of intermediate mass ratio systems, implying that these systems are more common and more diverse than previously thought.Comment: Accepted for publication in Astronomy & Astrophysics; 11 pages, 6 figure

    On the stratified dust distribution of the GG Tau circumbinary ring

    Get PDF
    Our objective is to study the vertical dust distribution in the circumbinary ring of the binary system GG Tau and to search for evidence of stratification, one of the first steps expected to occur during planet formation. We present a simultaneous analysis of four scattered light images spanning a range of wavelength from 800 nm to 3800 nm and compare them with (i) a parametric prescription for the vertical dust stratification, and (ii) with the results of SPH bi-fluid hydrodynamic calculations. The parametric prescription and hydrodynamical calculations of stratification both reproduce the observed brightness profiles well. These models also provide a correct match for the observed star/ring integrated flux ratio. Another solution with a well-mixed, but ``exotic'', dust size distribution also matches the brightness profile ratios but fails to match the star/ring flux ratio. These results give support to the presence of vertical stratification of the dust in the ring of GG Tau and further predict the presence of a radial stratification also.Comment: 9 pages, 11 figures. Accepted for publication in A&

    A Spectroscopic Survey of Subarcsecond Binaries in the Taurus-Auriga Dark Cloud with the Hubble Space Telescope

    Full text link
    We report the results of a spectroscopic survey of 20 close T Tauri binaries in the Taurus-Auriga dark cloud where the separations between primaries and their secondaries are less than the typical size of a circumstellar disk around a young star. Analysis of low-resolution and medium-resolution STIS spectra yields the stellar luminosities, reddenings, ages, masses, mass accretion rates, IR excesses, and emission line luminosities for each star in each pair. We examine the ability of IR color excesses, H-alpha equivalent widths, [O I] emission, and veiling to distinguish between weak emission and classical T Tauri stars. Four pairs have one cTTs and one wTTs; the cTTs is the primary in three of these systems. This frequency of mixed pairs among the close T Tauri binaries is similar to the frequency of mixed pairs in wider young binaries. Extinctions within pairs are usually similar; however, the secondary is more heavily reddened than the primary in some systems, where it may be viewed through the primary's disk. Mass accretion rates of primaries and secondaries are strongly correlated, and H-alpha luminosities, IR excesses, and ages also correlate within pairs. Primaries tend to have somewhat larger accretion rates than their secondaries do, and are typically slightly older than their secondaries according to three different sets of modern pre-main-sequence evolutionary tracks. Age differences for XZ Tau and FS Tau, systems embedded in reflection nebulae, are striking; the secondary in each pair is less massive but more luminous than the primary. The stellar masses of the UY Aur and GG Tau binaries measured from their rotating molecular disks are about 30% larger than the masses inferred from the spectra and evolutionary tracks

    Stellar and circumstellar properties of visual binaries in the Orion Nebula Cluster

    Full text link
    Our general understanding of multiple star and planet formation is primarily based on observations of young multiple systems in low density regions like Tau-Aur and Oph. Since many, if not most, of the stars are born in clusters, observational constraints from young binaries in those environments are fundamental for understanding both the formation of multiple systems and planets in multiple systems throughout the Galaxy. We build upon the largest survey for young binaries in the Orion Nebula Cluster (ONC) which is based on Hubble Space Telescope observations to derive both stellar and circumstellar properties of newborn binary systems in this cluster environment. We present Adaptive Optics spatially-resolved JHKL'-band photometry and K-band R\sim\,5000 spectra for a sample of 8 ONC binary systems from this database. We characterize the stellar properties of binary components and obtain a census of protoplanetary disks through K-L' color excess. For a combined sample of ONC binaries including 7 additional systems with NIR spectroscopy from the literature, we derive mass ratio and relative age distributions. We compare the stellar and circumstellar properties of binaries in ONC with those in Tau-Aur and Oph from samples of binaries with stellar properties derived for each component from spectra and/or visual photometry and with a disk census obtained through K-L color excess. The mass ratio distribution of ONC binaries is found to be indistinguishable from that of Tau-Aur and, to some extent, to that of Oph in the separation range 85-560\,AU and for primary mass in the range 0.15 to 0.8\,M_{\sun}.A trend toward a lower mass ratio with larger separation is suggested in ONC binaries which is not seen in Tau-Aur binaries.The components of ONC binaries are found to be significantly more coeval than the overall ONC population and as coeval as components of binaries in Tau-Aur and Oph[...]Comment: Accepted for publication in Astronomy & Astrophysic

    Is stellar multiplicity universal? Tight stellar binaries in the Orion nebula Cluster

    Get PDF
    We present a survey for the tightest visual binaries among 0.3–2 M⊙ members of the Orion nebula Cluster (ONC). Among 42 targets, we discovered 13 new 0.025–0.15 arcsec companions. Accounting for the Branch bias, we find a companion star fraction (CSF) in the 10–60 au range of 21 +8−5 per cent, consistent with that observed in other star-forming regions (SFRs) and twice as high as among field stars; this excess is found with a high level of confidence. Since our sample is dominated by disc-bearing targets, this indicates that disc disruption by close binaries is inefficient, or has not yet taken place, in the ONC. The resulting separation distribution in the ONC drops sharply outside 60 au. These findings are consistent with a scenario in which the initial multiplicity properties, set by the star formation process itself, are identical in the ONC and in other SFRs and subsequently altered by the cluster’s dynamical evolution. This implies that the fragmentation process does not depend on the global properties of a molecular cloud, but on the local properties of prestellar cores, and that the latter are self-regulated to be nearly identical in a wide range of environments. These results, however, raise anew the question of the origin of field stars as the tight binaries we have discovered will not be destroyed as the ONC dissolves into the Galactic field. It thus appears that most field stars formed in regions that differ from well-studied SFRs in the solar neighbourhood, possibly due to changes in core fragmentation on Gyr time-scales

    A discontinuity in the low-mass initial mass function

    Full text link
    The origin of brown dwarfs (BDs) is still an unsolved mystery. While the standard model describes the formation of BDs and stars in a similar way recent data on the multiplicity properties of stars and BDs show them to have different binary distribution functions. Here we show that proper treatment of these uncovers a discontinuity of the multiplicity-corrected mass distribution in the very-low-mass star (VLMS) and BD mass regime. A continuous IMF can be discarded with extremely high confidence. This suggests that VLMSs and BDs on the one hand, and stars on the other, are two correlated but disjoint populations with different dynamical histories. The analysis presented here suggests that about one BD forms per five stars and that the BD-star binary fraction is about 2%-3% among stellar systems.Comment: 14 pages, 11 figures, uses emulateapj.cls. Minor corrections and 1 reference added after being accepted by the Ap

    Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses

    Full text link
    Context. Brown dwarfs represent a sizable fraction of the stellar content of our Galaxy and populate the transition between the stellar and planetary mass regime. There is however no agreement on the processes responsible for their formation. Aims. We have conducted a large survey of the young, nearby cluster IC 348, to uncover its low-mass brown dwarf population and study the cluster properties in the substellar regime. Methods. Deep optical and near-IR images taken with MegaCam and WIRCam at the Canada-France-Hawaii Telescope (CFHT) were used to select photometric candidate members. A spectroscopic follow-up of a large fraction of the candidates was conducted to assess their youth and membership. Results. We confirmed spectroscopically 16 new members of the IC 348 cluster, including 13 brown dwarfs, contributing significantly to the substellar census of the cluster, where only 30 brown dwarfs were previously known. Five of the new members have a L0 spectral type, the latest-type objects found to date in this cluster. At 3 Myr, evolutionary models estimate these brown dwarfs to have a mass of ~13 Jupiter masses. Combining the new members with previous census of the cluster, we constructed the IMF complete down to 13 Jupiter masses. Conclusions. The IMF of IC 348 is well fitted by a log-normal function, and we do not see evidence for variations of the mass function down to planetary masses when compared to other young clusters.Comment: Accepted to A&A (8 November 2012

    High-spin structures of 88Kr and 89Rb: Evolution from collective to single-particle behaviors

    Full text link
    The high-spin states of the two neutron-rich nuclei, 88Kr and 89R have been studied from the 18O + 208Pb fusion-fission reaction. Their level schemes were built from triple gamma-ray coincidence data and gamma-gamma angular correlations were analyzed in order to assign spin and parity values to most of the observed states. The two levels schemes evolve from collective structures to single-particle excitations as a function of the excitation energy. Comparison with results of shell-model calculations gives the specific proton and neutron configurations which are involved to generate the angular momentum along the yrast lines.Comment: 12 pages, 9 figures, Physical Review C (2013) in pres
    corecore