Our general understanding of multiple star and planet formation is primarily
based on observations of young multiple systems in low density regions like
Tau-Aur and Oph. Since many, if not most, of the stars are born in clusters,
observational constraints from young binaries in those environments are
fundamental for understanding both the formation of multiple systems and
planets in multiple systems throughout the Galaxy. We build upon the largest
survey for young binaries in the Orion Nebula Cluster (ONC) which is based on
Hubble Space Telescope observations to derive both stellar and circumstellar
properties of newborn binary systems in this cluster environment. We present
Adaptive Optics spatially-resolved JHKL'-band photometry and K-band
R∼\,5000 spectra for a sample of 8 ONC binary systems from this database.
We characterize the stellar properties of binary components and obtain a census
of protoplanetary disks through K-L' color excess. For a combined sample of ONC
binaries including 7 additional systems with NIR spectroscopy from the
literature, we derive mass ratio and relative age distributions. We compare the
stellar and circumstellar properties of binaries in ONC with those in Tau-Aur
and Oph from samples of binaries with stellar properties derived for each
component from spectra and/or visual photometry and with a disk census obtained
through K-L color excess. The mass ratio distribution of ONC binaries is found
to be indistinguishable from that of Tau-Aur and, to some extent, to that of
Oph in the separation range 85-560\,AU and for primary mass in the range 0.15
to 0.8\,M_{\sun}.A trend toward a lower mass ratio with larger separation is
suggested in ONC binaries which is not seen in Tau-Aur binaries.The components
of ONC binaries are found to be significantly more coeval than the overall ONC
population and as coeval as components of binaries in Tau-Aur and Oph[...]Comment: Accepted for publication in Astronomy & Astrophysic